JUNE 2008

Code: AC03 / AT03

Time: 3 Hours

Subject: BASIC ELECTRONICS &
DIGITAL CIRCUITS

Max. Marks: 100

NOTE: There are 9 Questions in all.

• Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- a. Intrinsic Concentration of charge carriers in a semiconductor varies as
 - (A) T^3

(B) T^2

(C) T

- (D) 1/T
- b. Resistance across which of the following two pairs of transistor be nearly equal?
 - (A) Emitter base, emitter collector
 - (B) Emitter base, base collector
 - (C) Base Collector, Collector emitter
 - **(D)** None of the above
- c. In amplifier circuit, biasing of transistor is necessary to
 - (A) fix the value of current amplification
 - **(B)** establish suitable D.C working conditions
 - (C) ensure that transistor is saturated
 - (D) ensure that transistor is cut off
- d. N channel FETs are superior to P-channel FETs because
 - (A) they have a higher switching time
 - **(B)** they have a higher input impedance
 - (C) mobility of electron is greater than that of holes
 - (D) All of the above
- e. A negative feedback in amplifiers causes which of the following?
 - (A) Bandwidth reduces
- (B) Harmonic Distortion reduces

(C) Noise increases

- **(D)** All of the above
- f. Which of the following is the simplified versions of the Boolean expression $\overline{AB} + A\overline{B}\overline{C} + (\overline{A+B+C})$
 - (A) $\overline{A}B + \overline{B}\overline{C}$

(B) $\overline{AB} + \overline{BC}$

(C) AB + BC

(D) $A\overline{B} + B\overline{C}$

- g. Schmitt trigger can be used as
 - (A) Flip Flop

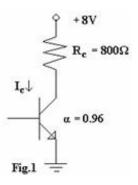
- (B) Comparator
- **(C)** Square Wave generator
- **(D)** All of the above
- h. MOS logic gates have no current hogging problem because the gate terminal has
 - (A) High impedance

- **(B)** Low input impedance
- (C) Zero impedance
- (D) Compensating effect
- i. Which of the following is the main advantage of an emitter follower
 - (A) Maximum distortion
- (B) Maximum efficiency

(C) Maximum gain

- (D) Maximum output impedance
- j. Staggered tuned amplifier generally use
 - (A) CE Configuration
- (B) CB Configuration
- (C) CC Configuration
- **(D)** JFET

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2 a. Explain the VI characteristics of the p-n junction diode.

(8)

b. Illustrate with the help of neat sketches the working of diode clippers and clampers.

(8)

Q.3 a. A transistor is connected in a common emitter configuration with collector supply of 8V and the voltage drop across the resistance R_c connected in the

collector circuit is 0.5V. The value of R_c =800 Ω . If α = 0.96 determine


- (i) Collector Emitter Voltage
- (ii) Collector Current
- (iii) Base Current amplification factor β
- (iv) Base Current
- (v) Find the emitter Current

(5)

b. State the regions of operation of a transistor and explain the biasing conditions for the three regions. (9)

- c. What is the reverse saturation current? (2)
- Q.4 a. Draw the circuit diagram of a Darlington pair amplifier. Give its merits and applications. (4)
 - b. What are the major differences between the collector characteristics of a BJT transistor and the drain characteristics of a JFET transistor? (3)
 - c. Determine V_{GS} , I_{DQ} and V_{DSQ} for the self-bias circuit shown in Fig.2.

(9)

- Q.5 a. State the Barkhausen conditions of oscillation in electronic system. What factors affect the frequency stability of an oscillator.(5)
 - b. (i) Calculate the output voltage of an op-amp in both inverting and non-inverting configurations when the input voltage is 10mV, $R_F = 100\text{K}\Omega$ and $R_1 = 1\text{K}\Omega$.
 - (ii) Design an amplifier with gain of -10.

(6)

(5)

- c. List the requirements of instrumentation amplifier and explain its working.
- Q.6 a. Reduce the Boolean equation using Karnaugh Map method $F = ABC + A\overline{B}C + AB\overline{C}$ and realise using basic gates. (4)
 - b. Design and implement encoder using logic gates.

(6)

c. Implement the X-OR function using only NOR gates.

(6)

Q.7	a.	Explain how active pull up is provided at the output of a TTL NAND gate diagram. (5)	with the help of	f a neat
	b.	Explain the working of transmission gate as a Switch.	(5)	
	c.	Implement the following using CMOS logic (i) NOR gate (ii) XOR gate	(6)	
Q.8	a	Explain the race around condition in a JK flip flop. Explain the logic involution with the help of a neat diagram.	ved to prevent t	he race (8)
	b.	Design a mod 7 counter.	(8)	
Q.9	a.	Define the terms Regulation and Peak inverse voltage in reference to rectifiers.	(4)	
	b.	Differentiate between EPROM and EEPROM.	(6)	
	c.	Discuss the architecture of programmable array logic.	(6)	