

PHYSICS -1

1. Following two wa	ve trains are approach	ing each other.	
	$y_2 = a \sin 208 \pi t$		
The number of beats	heard per second is:		
A. 8	B. 4	C. 1	D. 0
2. One of the geo-sta	ationary satellites of In	dia is vertically above	
A. New Delhi	B. Mumbai	C. Allahabad	D. None of these
3. Light of waveleng = 1.5) equal to	th 2400 x 10 ⁻¹⁰ m in a	ir will become light of	wavelength in glass (µ
A. 1600 x 10 ⁻¹⁰ m	B. 7200 x 10 ⁻¹⁰ m	C. 1080 x 10 ⁻¹⁰ m	D. none of these
	dary to primary turns t (neglect all losses) to	is 4:5. If power input is power input?	P, what will be the
A. 4:9	B. 9:4	C. 5:4	D. 1:1
5. Lenz's law applies	s to	, G	
A. electrostatics		B. lenses	
C. electro-magnetic	induction	D. cinema slides	
6. If a proton and an will be released?	ti-proton come close to	o each other and annihi	late, how much energy
A. $1.5 \times 10^{-10} \text{ J}$	B. 3 x 10 ⁻¹⁰ J	C. $4.5 \times 10^{-10} \text{ J}$	D. none of these
7. If Sn is doped with	h As, what will be the	result?	
A. <i>n</i> -type semi-cond	uctor	B. <i>p</i> -type semi-cond	uctor
C. intrinsic semi-cor	ductor	D. none of these	
8. A charge is placed of its faces?	l at the centre of a cub	e, what is the electric f	lux passing through one
A. $(1/6) \times (q/\epsilon_0)$	B. q/ϵ_0	C. $6q/\epsilon_0$	D. None of these
9. What is the degree	e of freedom in case of	f a mono atomic gas?	
A. 1	B. 3	C. 5	D. None of these

A. No force is acting on the body

B. Vector sum of force	ces acing on the body is	s zero	
C. The body is in vac	uum		
D. The forces acting	on the body do not cons	stitute a couple	S .
20. Energy released is	n stars is due to		
A. Fission	B. Fusion	C. Combustion	D. Chemical reaction
21. 13 days is the half become 1/16th of the	f-life period of a sampl original substance?	e. After how many d	ays, the sample will
A. 52	B. 3.8	C. 3	D. none of these
22. Absolute zero is t	he temperature at which	h) 2
A. water solidifies	-	B. all gases become	liquid
C. motion of molecul	es becomes minimum	D. everything solidi	fies
23. Motion of liquid i	in a tube is described by	у	
A. Bernaulli's	B. Poiseuille	C. Stoke's Law	D. Archimedes'
Theorem	Equation	9. 50010 5 24.	Principle
24. Molecular motion	shows itself as		
A. Temperature	B. Internal Energy	C. Friction	D. Viscosity
A. Temperature	B. Internal Energy	C. Priction	D. Viscosity
25. Which is this gate	?		
A. AND	B. NAND	—	
C. OR	D. NOR	_	
26. Energy bands in s	solids are a consequenc	e of	
A. Ohm's Law		B. Pauli's Exclusion	Principle
C. Bohr's Theory		D. Heissenberg's U	ncertainty Principle
•	stands on the floor of a is less than g. The force		
A. Mg x Ma	B. $g + a$	C. Mg – Ma	D. Mg + Ma

19. Which of the following conclusions is correct regarding a stationary body?

•	s m ₁ exerts a force on cceleration (in magnit	another body B of mass	$s m_2$. If the acceleration			
A. m_2/m_1 (a ₂)	B. m_1m_2 a_2	C. m_1/m_2 (a ₂)	D. $(m_1 + m_2) a_2$			
29. What does not ch	nange when sound ente	ers from one medium to	another?			
A. Wavelength	B. Speed	C. Frequency	D. none of these			
30. Resolving power	of a microscope deper	nds upon				
A. wavelength of light	ht used, directly	B. wavelength of ligh	B. wavelength of light used, inversely			
C. frequency of light	used	D. focal length of ob	jective			
	weight Mg is in a rocker ight of the astronaut was	et accelerating upward vill be	with an acceleration of			
A. 5Kg	B. 4Kg	C. Mg	D. zero			
		d of 10 ⁻⁴ m/s normally, e circle describe by it?	sp. charge = 10^{11} C/kg			
A. 0.1 m	B. 100 m	C. 10 m	D. none of these			
33. If a black body ra		second at 227°C, it wil	l radiate at 727°C			
A. 10 calories per second	B. 80 calories per second	C. 320 calories per second	D. none of these			
_	e is working with source. C, its efficiency will b	ce temperature equal to	227°C and its sink			
A. 20%	B. 10%	C. 67%	D. 50%			
35. If the frequency of potential energy is	of an oscillating partic	le is <i>n</i> , then the frequen	cy of oscillation of its			
A. n	B. 2n	C. n/2	D. 4n			
36. If an electron osc	illates at a frequency of	of 1 GHz, it gives:				
A. X-rays		B. Micro-waves				
C. Infra-red rays		D. None of these				
37. Earth's atmosphe	re is richest in					
A. Ultra-violet rays	B. Infra-red rays	C. X-rays	D. Micro-waves			

38. Cathode rays cor	sist of					
A. Photons	B. Electrons	C. Protons	D. α -particles			
			- · · · · · · · · · · · · · · ·			
39. A body of mass	m_1 is moving with a v	elocity V. It collides	s with another stationary			
body of mass m_2 . Th	ey get embedded. At	the point of collisio	n, the velocity of the system			
A. increases		B. decreases but	B. decreases but does not become zero			
C. remains same		D. becomes zero				
1 0	•	1 0	t into 2 parts of masses in e velocity of the other part?			
A. 4V	B. V	C. 4V/3	D. 2V/3			
41. A thief steals a b jump, he experience		mps from the third f	loor of a building. During			
A. W	B. 3W	C. 1.5W	D. zero			
42. Two electron bea	ams are moving paral	lel in space but in o	pposite directions; then			
A. they will attract e		B. they will repo	-			
C. no interaction wil		D. none of these				
43. Two wires with a generated in 2R and		are connected in par	rallel, the ratio of heat			
A. 1:3	B. 2:1	C. 1:4	D. 4:1			
44. A wire is drawn	such that its radius ch	tanges from r to $2r$,	the new resistance is			
A. 2 times	B. 4 times	C. 8 times	D. 1/16 times			
45. In solids, inter-at	tomic forces are					
A. totally repulsive	7	B. totally attract	ive			
C. combination of (a	and (b)	D. none of these	,			
46. When horse start because	s running all of a sud	den, the rider on the	horse back falls backward			
A. he is taken aback						
B. he is afraid						
	est, the upper part of l	his body remains at	rest			
	notion, the lower part	•				

47. What should be the so that the string just	ne minimum velocity at does not slack?	the highest point of a	body tied to a string,
A. $\sqrt{(Rg)}$	B. $\sqrt{(5Rg)}$	C. $(R/g)^{3/2}$	D. $\sqrt{(2Rg)}$
48. If a person standing	ng on a rotating disc str	retches out his hands, th	ne speed will:
A. increase		B. decrease	
C. remain same		D. none of these	
49. EMF is most clos	ely related to		
A. mechanical force	B. potential difference	C. electric field	D. magnetic field
50 DI	1 1 1	.,	7 7
• •	in the solar system des	B. conservation of line	and management was
A. conservation of en C. conservation of an		D. none of these	ear momentum
51. Lenz's law is base	~	D. Holle of tilese	
J1. Leliz 8 law 18 base	a upon	Concular	
A. energy	B. momentum	C. angular momentum	D. inertia
52. Faraday's second proportional to	law states that mass de	posited on the electrod	e is directly
A. atomic mass	B. atomic mass x velocity	C. atomic mass/valency	D. valency
53. Unit of power is			
A. kilowatt hour	B. kilowatt per hour	C. kilowatt	D. erg
54. Power can be exp	ressed as		
7 / 10	B. $1/2 (Fv^2)$	C. F.t	D. F x v
55. Units of coefficien	nt of viscosity are		
A. Nms ⁻¹	B. Nm ² s ⁻¹	C. Nm ⁻² s	D. Nms ⁻²
56. Dimensions of tor	que are		
A. MLT ⁻²	B. ML^2T^{-2}	$C. M^2L^2T^{-2}$	D. ML ⁻² T ⁻²
57. A body of weight	mg is hanging on a stri	ing, which extends its l	ength by l . The work

done in extending the string is

A. mg l

B. mg 1/2

C. 2 mg l

D. none of these

58. The water droplets in free fall are spherical due to

A. gravity

B. viscosity

C. surface tension

D. inter-molecular

attraction

59. A ball of mass 1Kg is accelerating at a rate of 1ms⁻². The rate of change of momentum is

A. 1 Kg ms⁻²

B. 2 Kg ms⁻²

C. 3 Kg ms⁻²

D. 4 Kg ms⁻²

60. A body orbitting around earth at a mean radius which is two times as great as the parking orbit of a satellite. The period of the body is

A. 4 days

B. $2\sqrt{2}$ days

C. 16 days

D. 64 days

61. If the ground state energy of H-atom is 13.6 eV, the energy required to ionize an H-atom from second excited state is :

A. 1.51 eV

B. 3.4 eV

C. 13.6 eV

D. 12.1 eV

62. The binding energy per nucleon is maximum in case of:

A. 2He⁴

B. 26Fe⁵⁶

C. 56Ba¹⁴

D. 92U²³

63. The energy of a photon of wavelength λ is :

A. hc λ

B. hc/λ

C. λ /hc

D. $h\lambda/c$

64. Radio waves of constant amplitude can be generated with:

A. rectifier

B. filter

C. FET

D. oscillator

65. Great bear is a

A. Star

B. Galaxy

C. Constellation

D. Planet

66. Monoclinic crystal lattice has dimensions

A. $\alpha = \beta = \gamma$

B. $\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$

C. $\alpha \neq \beta \neq \gamma$

D. None of these

67. Which of the following relations is correct?

A. $E^2 = pc^2$

B. $E^2 = p^2 c$

C. $E^2 = p^2c^2$

D. $E^2 = p^2/c^2$

68. During nuclear di	sintegration, the follow	ing is true			
A. mass in conserved		B. energy is conserved			
C. kinetic Energy is c	onserved	D. momentum is conserved			
69. The nucleus force	es are				
A. charge-dependent	B. spin-dependent	C. charge-symmetric	D. long range		
70. During radio-activ	ve decay, the negative	charged particle is emit	tted because of		
A. X-rays		B. β emissions	. 02		
C. Transmutation of r	neutron into proton	D. None of these			
71. Particle in β - dec	ay is		1		
A. Neutron	B. Proton	C. Electron	D. Photon		
72. Energy in stars is	produced by				
A. fusion	B. fission	C. radioactive decay	D. artificial transmutation		
73. Atomic packing fi	raction in bcc lattice is	Ġ			
A. $1/\sqrt{\pi}$	B. √π	C. $\pi / \sqrt{2}$	D. None of these		
74. The count of α - pthis radioactive elements		n 28,800 to 1,800 in 48	hours, the half-life of		
A. 4 hours	B. 8 hours	C. 12 hours	D. 16 hours		
75. Binding energy w	ill be maximum in the	case of			
A. He ³	B. He ²	$C. H^2$	D. He ⁴		
76. Binding energy po	er nucleon in heavy nu	clei is of the order of			
A. 8 MeV	B. 8 eV	C. 80 eV	D. 80 MeV		
77. Complete the seri	es $He^6> e + Li^6 + ?$				
A. nutrino	B. anti-nutrino	C. proton	D. neutron		
78. Line spectrum car	n be obtained from				
A. Sun	B. Candle	C. Mercury Vapour Lamp	D. Electric Bulb		

79. What is radius of	lst Bohr's orbit in a Hy	drogen atom?				
A. 0.53 x 10 ⁻¹⁰ cm		B. 0.53×10^{-8} cm				
C. 2.73 x 10 ⁻¹⁰ cm		D. $2.73 \times 10^{-12} \text{ cm}$				
80. What is the energy	of an electron of Hyd	rogen in its ground star	te ?			
A13.6 eV	B. 0	C. infinity	D. 13.6 eV			
81. What is the rest m	ass of a photon?					
A. 0	B. 13.6 eV	C. 1 MeV	D. $3.1 \times 10^{-27} \text{ kg}$			
82. Two lenses of powwill be	vers $12D$ and - $2D$ are p	placed together, the con	mbined focal length			
A. 1 cm	B. 10 cm	C. 100 cm	D. 1000 cm			
83. The critical angle	is maximum when ligh	t travels from				
A. water to air	B. glass to air	C. glass to water D. air to water				
	back falls forward who		stops. This is due to			
A. inertia of horse		B. inertia of rider				
C. large weight of the	horse	D. losing of the balance	ce			
85. Fundamental parti	cle in an electro-magne	etic wave is				
A. photon	B. electron	C. phonon	D. proton			
86. The wavelength is	least in case of					
A. γ -rays	B. X-rays	C. infrared	D. ultraviolet			
87. The speed of elect	ro-magnetic radiation i	n vacuum is				
A. $\mu_0 \epsilon_0$	B. $\sqrt{(\mu_0 \epsilon_0)}$	C. $1/\mu_0 \ \epsilon_0$	D. $1/\sqrt{(\mu_0 \epsilon_0)}$			
88. Power factor in LO	Coscillations is					
A. 0	B. 1	C. 1/4	D. $1/\sqrt{2}$			
89. 220 V is changed A, what is the current	_	ep-up transformer. Th	current in primary is 5			
A. 5 A	B. 50 A	C. 0.5 A	D. 500 A			

90. When a bar is plais	ced near a strong magn	et, it is repelled, then the	ne material of the bar
A. Dimagnetic		B. Ferromagnetic	
C. Paramagnetic		D. Anti-ferrimagnetic	
· ·	to a magnetic field at a	•	
A. straight line	B. circle	C. parabola	D. helix
92. One electron is m	oving in electric and m	agnetic fields, it will g	ain energy from:
A. electric field	B. magnetic field	C. both of these	D. none of these
	conductor of length 5 r		nperes kept
A. 10 N	B. 100 N	C. 15 N	D. 50 N
94. If $E = at - bt^3$, the	e neutral temperature is	A 0 7	
A2a/b	B2b/a	C. $\sqrt{(a/3b)}$	Db/2a
95. The charge carrie	rs in an electrolyte are	Ċ	
A. negative ions	B. positive ions	C. both A and B	D. none of these
10 W, what will be the connected across the	***	ough any of them if it is	s individually
A. 40 W	B. 10/3 W	C.90W	D.10W
	is connected across a particle		g length is 600 cm.
A. 400 cm	B. 600 cm	C. 1500 cm	D. 1200 cm
98. A Wire of resistance?	nce <i>R</i> is stretched to twi	ice its original length,	what is its new
A. 4 R	B. R/9	C. 3 R	D. R/3
99. The charge carrie	rs in super-conductors a	are	
A. electrons		B. protons	
C. phonons		D. photons	

100. 8 drops of mercury are combined to form a bigger single drop. The capacitance of a single big drop and of the single small drop will be in the ratio

A. 2:1

B. 1:8

C. 8:1

D. 1:2

Solutions:

1	2	3	4	5	6	7	8	9	10
В	D	A	D	C	В	A	A	B	C
11	12	13	14	15	16	17	18	19	20
A	C	C	В	C	В	A	A	В	В
21	22	23	24	25	26	27	28	29	30
A	C	В	Α	В	В	C	A	\mathbf{C}	В
31	32	33	34	35	36	37	38	39	40
A	В	C	C	В	D	В	В	C	C
41	42	43	44	45	46	47	48	49	50
D	В	Α	D	C	C	A	В	В	C
51	52	53	54	55	56	57	58	59	60
D	C	C	Α	C	В	В	C	A	В
61	62	63	64	65	66	67	68	69	70
A	В	В	D	C	C	C	C	В	C
71	72	73	74	75	76	77	78	79	80
C	A	D	C	V D	A	В	C	В	A
81	82	83	84	85	86	87	88	89	90
A	В	C	В	Α	A	D	A	C	A
91	92	93	94	95	96	97	98	99	100
D	Α	В	C	C	A	C	A	A	A
	- N	/v							