SECTION - A

10 × 2 = 20

VERY SHORT ANSWER TYPE QUESTIONS

Answer All questions. Each question carries 2 marks.

- 1. If h(x) = 2x, $g(x) = x^2$, f(x) = 2 then find $(f \circ g \circ h)(x)$.
- 2. Find the domain of $\sqrt{x^2 3x + 2}$.
- Show that the points -2a+3b+5c, a+2b+3c, 7a-c are collinear where a, b, c are three non-coplanar vectors.
- 4. If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j} + \mathbf{k}$, $\mathbf{b} = 4\mathbf{i} + m\mathbf{j} + n\mathbf{k}$ and \mathbf{a} , \mathbf{b} are collinear, find m, n.
- If a = 2i + tj k and b = 4i 2j + 2k, find the value of t, so that a and b are perpendicular.
- **6.** If $\frac{\cos \alpha}{a} = \frac{\sin \alpha}{b}$, show that $a \cos 2\alpha + b \sin 2\alpha = a$.
- 7. Find the extreme values of $\cos x \cos \left(\frac{2\pi}{3} + x\right) \cos \left(\frac{2\pi}{3} x\right)$.
- **8.** If $u = \log \left[\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right]$ then prove that $\cosh u = \sec \theta$.
- 9. If $\tan\left(\frac{A}{2}\right) = \frac{5}{6}$ and $\tan\left(\frac{C}{2}\right) = \frac{2}{5}$, determine the relation between a, b, c.
- **10.** Show that the points in the Argand diagram represented by the complex numbers -2 + 7i, $-\frac{3}{2} + \frac{1}{2}i$, 4 3i, $\frac{7}{2}(1 + i)$ are the vertices of a rhombus.

SECTION - B

5 × 4 = 20

SHORT ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 4 marks.

- 11. Prove by vector method that $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of a straight line in intercept form.
- Determine the value of λ, for which the volume of the parallelopiped having coterminus edges i + j, 3i j and 3i + λk is 16 cubic units.

- **13.** Prove that $\cos \theta \cos (60^{\circ} + \theta) \cdot \cos (60^{\circ} \theta) = \frac{1}{4} \cos 3\theta$ and hence deduce that $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} = 3/16$.
- **14.** In the interval $0 \le \theta \le \pi/2$, solve $\sin \theta + \sin 4\theta + \sin 7\theta = 0$.
- **15.** If $Tan^{-1}x + Tan^{-1}y + Tan^{-1}z = \pi$, prove that x + y + z = xyz.
- **16.** Show that $a\cos^2\frac{A}{2} + b\cos^2\frac{B}{2} + c\cos^2\frac{C}{2} = s + \frac{\Delta}{R}$
- 17. Show that $2^4 \cos^5 \theta = \cos 5\theta + 5 \cos 3\theta + 10 \cos \theta$.

SECTION - C

 $5 \times 7 = 35$

LONG ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 7 marks.

- **18.** If $f: A \to B$, $g: B \to C$, $h: C \to D$ are three functions, then prove that $h_0(g_0f) = (h_0g)_0 f$.
- **19.** Show that $49^n + 16n 1$ is divisible by 64 for all positive integral values of n.
- **20.** In a \triangle ABC, using vector method, prove that $\cos(\alpha \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$
- **21.** If $A + B + C = 180^{\circ}$ then show that $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} \sin^2 \frac{C}{2} = 1 2\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2}$.
- **22.** If $r_1 = 8$, $r_2 = 12$, $r_3 = 24$, show that a = 12, b = 16, c = 20.
- 23. From the top of a hill 200 metres high, the angles of depression of the top and bottom of a pillar on the level ground are 30° and 60° respectively. find the height of the pillar.
- 24. If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then show that i) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 3/2$ ii) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 3/2$