

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 **COMPUTER ORGANIZATION**

SEMESTER - 3

Time: 3 Hours]	[Full Marks : 70
	•

1.	Choo	ose th	e correct alternatives for the fo	$10 \times 1 = 10$					
	i)	When signed numbers are used in binary arithmetic then which one of the following notations would have unique representation for zero?							
		a)	Sign magnitude	b)	1's Complement				
٠.		c)	2's Complement	d)	None of these.				
	ii)	The	logic circuitry in ALU is						
		a) .	entirely combinational						
*.		b)	entirely sequential						
		c)	combinational cum sequentia	l					
		d)	none of these.						
	iii)		micro-processor, the addres	s of th	the next instruction to be executed, is				
		a)	Stack pointer						
		b)	Address latch						
		c)	Program counter	· · · · · · · · · · · · · · · · · · ·					
		d)	General purpose register.						
	iv)	The	technique of placing software i	n a RO	OM semiconductor chip is called				
* * *	••	a)	PROM	b)	EPROM				
		c)	FIRMWARE	d)	Micro-Processor.				

2 + 1 + 2

-v)	Cach	ne Memory .								
	b)	increases performance	b)	increases machine cycle						
	c)	reduces performance	d)	none of these.						
vi)	Asso	ciative memory is a								
	a)	very cheap memory	b)	pointer addressable memory						
	c)	content addressable memory	d)	slow memory.						
vii)	A single bus structure is primarily found in									
•	a)	main frames	b)	super computers						
	c)	high performance machines	d)	mini and micro-computers.						
viii)	Memory mapped I/O scheme is used for the allocation of address to memories and I/O devices is used for									
	a)	small system	b)	large system						
	c)	both large and small systems	d)	very large system.						
ix)	The convertion of (FAFAFA) 16 into octal form is									
	a)	76767676	b)	76575372						
	c)	76737672	d)	76727672.						
x)	Which of the following addressing modes is used in the instruction PUSH B?									
	a) `	Immediate	b)	Register						
	c)	Direct	d)	Register Indirect.						
		GROUP	- B							
(Short Answer Type Questions)										
	Answer any three of the following. $3 \times 5 = 15$									
Show the circuit diagram for implementing the following register transfer operation. If $(ab^- = 1)$ then R1 \leftarrow R2 else R1 \leftarrow R3, where a and b are control variables.										
What do you mean by instruction cycle, machine cycles and T states?										
What is virtual memory? Why is it called virtual? Write the advantage of virtual										

memory.

2.

3.

- 5. What are the advantages of microprogramming control over hardwared control? What is the role of operating system?

 3 + 2
- 6. What are the different types of interrupt? Give examples. What is programmed I/O technique?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) What are Von Neumann concept and its bottleneck?
 - b) Represent the decimal value 7.5 in IEEE 754 single precision floating-point format.
 - c) Compare parallel adder with serial adder.
 - d) What is the necessity of guard bits?
 - e) Explain and draw the 4-bit binary decrementer circuit. 4
 - 4 + 3 + 4 + 1 + 3
- 8. a) Draw the internal cell diagram of PROM and explain its functionality.
 - b) What is cache memory? How does it increase the performance of a computer?
 What is hit ratio?
 - c) A three level memory system having cache access time of 5 nsec and disk access time of 40 nsec, has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the main memory access time to achieve an overall access time of 16 nsec,?
 - d) Define: (i) rotational latency, (ii) seek time.

- 4 + 4 + 5 + 2
- 9. a) What is instruction cycle? Draw the time diagram for memory write operation.
 - b) Explain the basic DMA operations for transfer of data between memory and Peripherals.
 - c) Evaluate the arithmetic statement X = (A * B) / (C + D) in one, two and three address machines. 1 + 4 + 5 + 5

10. a) Given the following, determine the size of the sub-fields in the address for direct mapping, associative mapping and set-associative mapping cache schemes:

Main memory size

512 MB

Cache memory size

1 MB

Address space of processor

512 MB

Block size

128 B

8 blocks in cache set.

b) Differentiate between memory mapped I/O and I/O mapped I/O.

10 + 5

Write short notes on any three of the following:

 3×5

- a) Magnetic recording
- b) Cache replacement policies
- c) Non-restoring division method
- d) Addressing modes
- e) Booth's algorithm.

END