Second B.Sc. Degree Examination, August/September 2008 Directorate of Correspondence Course PHYSICS

Paper - II: Sound, Optics, Electricity and Electromagnetism

Time: 3 Hours

Max. Marks: 75

Instructions: 1) Answer all questions in Section A.

- 2) Answer any FIVE from Section B, any FIVE from Section C and any TWO from Section D.
- 3) Draw neat labelled diagrams.
- 4) Take the necessary data from the tables.

SECTION - A

I. Answer all the questions:

 $(10 \times 1 = 10)$

- 1) What is beat frequency/
- 2) Explain the term "phase" as applied to vibrating particle.
- 3) What is wave front?
- 4) What is high pass R.C. filters? 2000
- 5) Write down the expression for dispersive power of a diffraction grating.
- 6) What is double refraction?
- 7) Write any two applications of choke.
- 8) What is displacement current?
- 9) Write the equation of continuity.
- 10) State Gauss theorem in vector field.

SECTION - B

II. Answer any FIVE questions:

 $(5 \times 3 = 15)$

- 11) State any three characteristics of wave motion.
- 12) Obtain the expressions for RMS value of AC.
- Explain Laplace's corrections to the velocity of sound and obtain Newton--Laplace formula.
- 14) Describe an experiment to determine R.I. of liquid by Newton's rings method.
- 15) Distinguish between Fresnel and Fraunhofer diffractions.
- 16) Derive an expression for ripple factor in case of full wave rectifier.
- 17) State and explain Ampere's circuital law.

SECTION - &

III. Answer any FIVE questions

 $(5 \times 6 = 30)$

- 18) Derive an expression for the velocity of longitudinal waves in a rod.
- 19) How circularly and Elliptically polarised light are produced and detected?
- 20) Derive an equation for Damped Oscillation.
- 21) Describe the construction and action of Huygen's eye piece. Why cross-wires can not be used in a Huygen's eye piece?
- 22) Derive an expression for the current in an LCR series circuit to which an AC voltage is applied by the "J" operator method.
- 23) Obtain an expression for the velocity of electromagnetic waves and hence show that the EM waves travel with the velocity of light.
- 24) Obtain an expression for intensity of a plane-progressive wave.

SECTION - D

IV. Answer any TWO questions: (2×10=	·20)
25) a) Describe the construction and working of the Michelson's interferometer.	6
b) The distance between two coherent sources is 1 mm and the screen is 1 m away the sources. The second dark band is 0.1 cm from the central bright fringe. Find the wavelength and the distance of the second bright fringe.	4
26) a) Give the construction of Zone plate. Derive a formula for its focal length.	6
b) A diffraction grating containing 6×10^5 lines per meter is used at normal incidence. Calculate the dispersive power of the grating in the second order spectrum of wavelength region 5×10^{-7} m.	4
 a) Give the theory of ballistic galvanometer. Explain the damping correction. b) An inductance of 10 mH and a resistance of 50 ohm are connected in series to a 220 V, 50 Hz are mains. Calculate the value and phase of the current. What is the power dissipated in the current. 	6
and power/dissipated in the circuit?	4
28) a) Set up Maxwell's Electromagnetic equations.	7
b) Estimate the value of permittivity of free space from the knowledge of velocity of electromagnetic waves in free space.	3
•	