## CBSE TEST PAPER-03

## Class X - Mathematics (Polynomials)

1. Degree of polynomial $y^{3}-2 y^{2}-\sqrt{3 y}+\frac{1}{2}$ is
(a) $\frac{1}{2}$
(b) 2
(c) 3
(d) $\frac{3}{2}$
2. Zeroes of $P(x)=2 x^{2}+9 x-35$ are
(a) 7 and $\frac{5}{2}$
(b) -7 and $\frac{5}{2}$
(c) 7 and 5
(d) 7 and 2
3. The quadratic polynomial whore zeros are 3 and -5 is
(a) $x^{2}+2 x-15$
(b) $x^{2}+3 x-8$
(c) $x^{2}-5 x-15$
(d) None of these
4. If $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{px}+\mathrm{q}$, then the value of $\alpha^{2}+\beta^{2}$ is equal to
(a) $p^{2}-2 q$
(b) $\frac{p}{q}$
(c) $q^{2}-2 p$
(d) none of these
5. Find the zeros of the polynomial $p(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ and verify the relationship $b / w$ the zeros and its coefficients
6. Find the value of ' $k$ ' so that the zeroes of the quadratic polynomial $3 x^{2}-k x+14$ are in the ratio 7:6
7. If one zero of the quadratic polynomial $f(x)=4 x^{2}-8 k x-9$ is negative of the other, find the value of ' $k$ '.
8. Cheek whether the polynomial $\left(t^{2}-3\right)$ is a factor of the polynomial $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$ by Division method
9. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$. If two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
10. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ id divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be ( $x+a$ ), find ' $k$ ' and ' $a$ '
11. Find the value of ' $k$ ' for which the polynomial $x^{4}+10 x^{3}+25 x^{2}+15 x+k$ is exactly divisible by $(\mathrm{x}+7)$
12. If $\alpha$, and $\beta$ are the zeros of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$ form polynomial whore zeros are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$
