SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2010 VERSION – A1

[PHYSICS & CHEMISTRY]

1. Ans: Time $\therefore R = \frac{2u^2 \sin \theta \cos \theta}{g}$ Sol: RC $\rightarrow \frac{L}{R} \rightarrow$ both time constant. $=\frac{2u^2\frac{1}{\sqrt{5}}\times\frac{2}{\sqrt{5}}}{a}=\frac{4u^2}{5a}$ 2. Ans: 4 **3.** Ans: 25.5 m s⁻¹ 7. Ans: 30 rad/s Sol: $T = mr\omega^2$ Sol: $\sqrt{\frac{u^2 + v^2}{2}} = \sqrt{\frac{20^2 + 30^2}{2}}$ $\omega^2 = \frac{T}{mr} = 900 \Rightarrow \omega = 30 \text{ rad/s}$ $= \sqrt{\frac{400 + 900}{2}} = \sqrt{650}$ **8.** Ans: 4 m s^{-1} along x-direction. $\simeq 25.5 \text{ m s}^{-1}$ Sol: $\overrightarrow{r} = 2t^2\hat{i} + 3t\hat{j} + 4\hat{k}$ 4. Ans: 190.5 km/h $v = \frac{dr}{dt} = 4t + \hat{i} + 3\hat{j}$ Sol: 5 hrs $a = \frac{dv}{dt} = 4\hat{i} \implies 4 \text{ m/s}^2$ in the x-direction. Ans: Inertia of motion. 9. 2 hrs 10 hrs Sol: Theoretical. 10. Ans: 192 N Sol: $\mathsf{T} = \mathsf{m}(\mathsf{g} + \mathsf{a})$ Average speed = $\frac{\text{total distance}}{1}$ = 16 × 12 total time = 192 N $=\frac{4000}{21}$ 11. Ans: Magnetic force Managen = 190.5 km/h 12. Ans: 4 W 5. Ans: Uniform acceleration Sol: $P = \overrightarrow{F} \cdot \overrightarrow{v} = 4 W$ Sol: Theoretical. **13.** Ans: 10⁻²⁰ J 6. Ans: $\frac{4u^2}{5 g}$ Assuming hydrogen bond is broken Sol: energy required will be 10⁻²⁰ J Sol: $\frac{R}{H} \cdot 4 \cot\theta \Rightarrow \cot\theta = \frac{1}{2}$ 14. Ans: Work done by friction over a closed path is zero. $\tan\theta = 2$ 2

- 16. Ans: 2 s
 - Sol: $\tau = I\alpha$
 - $3 \times 10^2 \times 4.6$ $6.9 \times 10^2 =$
- **17.** Ans: $\frac{3}{2}$ MR² solving t = 2 s

Sol:

25. Ans:

$$I_t$$

 $I_t = \frac{MR^2}{2} + MR^2 = \frac{3}{2}MR^2$
 $2.16 \times 10^{26} \text{ kg}$
 $\sqrt{\frac{2 \text{ GM}_P}{R_P}} \cdot 3\sqrt{\frac{2 \text{ GM}_e}{R_e}}$
26. Ans:

18. Ans: 2.16×10^{26} kg

Sol:
$$\sqrt{\frac{2 \text{ GM}_{\text{P}}}{\text{R}_{\text{P}}}} \cdot 3 \sqrt{\frac{2 \text{ GM}_{\text{e}}}{\text{R}_{\text{e}}}}$$

 $\frac{M_{\text{P}}}{R_{\text{P}}} = 9 \frac{M_{\text{e}}}{R_{\text{e}}}$
 $\frac{M_{\text{P}}}{4 \text{R}_{\text{e}}} = 9 \frac{M_{\text{e}}}{R_{\text{e}}}$
 $\therefore M_{\text{P}} = 36 M_{\text{e}} = 36 \times 6 \times 10^{24}$
 $= 2.16 \times 10^{26} \text{ kg}$

19. Ans: Half the potential energy of the satellite

Sol: P.E =
$$-\frac{GMm}{r}$$

T.E = $-\frac{GMm}{2r}$

20. Ans:
$$\frac{mgR}{12}$$

Sol: Energy required = Final energy initial energy GMm) 1

$$= -\frac{GMm}{2(3 R)} - \left(-\frac{GMm}{2(2 R)}\right)$$
$$= \frac{GMm}{2 R} \left[\frac{1}{2} - \frac{1}{3}\right]$$
$$= \frac{GMm}{12 R} = \frac{gR^2 m}{12 R}$$
$$= \frac{mgR}{12}$$

21. Ans: 24 cc

Sol:
$$B = \frac{1}{\text{compressibility}} = \frac{PV}{dV}$$
$$\frac{1}{6 \times 10^{-10}} = \frac{4 \times 10^7 \times 1}{dV}$$
$$dV = 24 \times 10^{-3} \text{ litres}$$
$$= 24 \text{ cc}$$

- 22. Ans: Carburetor of automobile
- 23. Ans: Shearing stress there is change in volume.
- Reynold's number 24. Ans:
- 25. Ans: 4800 K

$$\sqrt{\frac{3 \text{ RT}_{\text{H}}}{M_{\text{H}}}} = \sqrt{\frac{3 \text{ RT}_{0}}{M_{0}}}$$
$$\frac{T_{\text{H}}}{M_{\text{H}}} = \frac{T_{0}}{M_{0}}$$
$$\frac{300}{2} = \frac{T_{0}}{32}$$
$$T_{0} = 16 \times 300 = 4800 \text{ K}$$

26. Ans: Inversely proportional to number of molecules per unit volume

Sol:
$$\lambda = \frac{1}{\sqrt{2}\pi nd^2}$$

n = number of molecules / unit volume d = diameter of the molecule

27. Ans: 150 J

Sol:
$$\frac{1}{3} = \frac{\theta_2}{\theta_1 - \theta_2}$$
$$= \frac{\theta_2}{200 - \theta_2}$$
$$\therefore \theta_2 = 50$$
$$\therefore W = 200 - 50 = 150 \text{ J}$$

28. Ans: 3 R

Sol: Heat capacity per mole of water = C_V
$$\frac{f}{2} R = \frac{36}{2} R = 3 R$$

- 29. Ans: 75
 - No. of beats in 1 s = 1.25Sol: \therefore in 1 minute = 1.25 \times 60 = 75
- 30. Ans: Damped oscillator.

31. Ans: 20

Sol:
$$\frac{1}{2} kA^2 = 4$$

 $A^2 = \frac{8}{800} = \frac{1}{100}$
 $A = \frac{1}{10} = 0.1 \text{ m}$
 $a_{\text{max}} = \omega^2 A$
 $= \frac{k}{m} .A$
 $= \frac{800}{4} \times 0.1 = 20 \text{ m/s}^2$

- 32. Ans: Interference
- 33. Ans: 320 Hz
 - Sol: Fundamental frequency $f_0 = \frac{v}{4L} = \frac{320}{4 \times 1} = 80 \text{ Hz}$

Management Et So it can resonate with f_0 , $3f_0$, $5f_0$, $7f_0$ ---: cannot resonate with 320 Hz.

34. Ans: 240 Hz

Sol:
$$f' = \frac{v + v_L}{v} \times f$$
$$= \frac{330 + 30}{330} \times 220$$
$$= 240 \text{ Hz}$$

35. Ans: n^{5/3} : 1

Sol: Capacitance of big drop = C' = n^{1/3} C
Potential of big drop V'₂ = n^{2/3} V

$$\therefore$$
 Energy of big drop = $\frac{1}{2}$ C'V'²
= $\frac{1}{2}$ n^{1/3} C(n^{2/3} V)²
= n^{5/3} $\frac{1}{2}$ CV²
 \therefore Ratio = n^{5/3} : 1
36. Ans: $\frac{R_2}{R_1}$

Sol: Potential is same $\therefore k \frac{Q_1}{R} = k \frac{Q_2}{R}$ \overline{R}_2 R₁ $\frac{4\pi R_1^2 \sigma_1}{2} = \frac{4\pi R_2^2 \sigma_2}{2}$ R₁ R_2 $\therefore \ \frac{\sigma_1}{\sigma_2} = \frac{R_2}{R_1}$

37. Ans: 2 V

Sol:

Charge across the combination of 2 μ F and 3 μF = charge across 3 μF

V1

 $\frac{2}{3}$

$$\therefore \frac{2 \times 3}{2 + 3} \, \mu F \times 5 = 3 \, \mu F \times \therefore V_1 = 2 \, V$$

20 _____ m 38. Ans:

Let the potential be zero at P and Q. Then solving for x1

$$\frac{K \times 5}{x_1} = \frac{2}{(1-x_1)}$$

$$\therefore x_1 = \frac{5}{7}$$

Similarly, $\frac{K \times 5}{1+x_2} = \frac{K \times 2}{x_2}$

$$\therefore x_2 = \frac{2}{3}$$

Separation PQ = $1 - \left(\frac{2}{7} + \frac{20}{21}\right)$

39. Ans: 10¹²

Sol: qE = mg $n \times 1.6 \times 10^{-19} \times 100$ $= 1.6 \times 10^{-6} \times 10$ $n = 10^{12}$

40. Ans: 4 V

Sol:
$$I = \frac{E}{R_{eff}} = \frac{12}{24} = \frac{1}{2}A$$

$$\therefore E = \frac{1}{2} \times 8 = 4 V$$

41. Ans: 20 Ω

Sol:
$$500 = \frac{V^2}{R} = \frac{20000}{R}$$
$$R = 20 \Omega$$
$$I^2 R = 500$$
$$I = 5 A$$
$$\therefore \frac{200}{(20 + R_1)} = 5$$
Solving, R₁ = 20 Ω

42. Ans: 0 V

Sol:

$$+3 \vee 0.2 \text{ M}\Omega$$

$$P$$

$$I = \frac{18}{1.2 \times 10^{-6}}$$

$$V \text{ across } 1 \text{ M}\Omega = \frac{18}{1.2 \times 10^{-6}} \times 1 \times 10^{6} = 15 \text{ V}$$

$$\therefore \text{ Potential at P = 0 V}$$

- 43. Ans: Nichrome
- **44.** Ans: $\frac{1}{3}$ A

Sol:
$$E_{eff} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2} = 2 V$$

 $I = \frac{E_{eff}}{R_{eff}} = \frac{2}{5+1} = \frac{2}{6} = \frac{1}{3} A$

- **45.** Ans: 2.5×10^5 A/m
 - Sol: $I = \chi H$ $= (\mu_r - 1) \times nI$ = 499 × 500 × 1 $= 2.495 \times 10^{5}$ $\cong 2.5 \times 10^5 \text{ A/m}$
- 46. Ans: The resultant magnetic moment in an atom of a diamagnetic substance is zero.
- 47. Ans: 1.25 m

Sol:
$$B = \frac{\mu_0 I}{2r} = \frac{\mu_0 q f}{2r}$$

 $6.28 = \frac{4\pi \times 10^{-7} \times 2 \times 10^{-6} \times 6.25 \times 10^{12}}{2r}$

$$= \frac{157.08 \times 10^{-1}}{2r}$$
$$r = \frac{157.08 \times 10^{-1}}{2 \times 6.28}$$
$$= 1.25 \text{ m}$$

48. Ans: 0.1Ω

Sol:
$$I_g = \frac{10}{10.1} \text{ mA} = 0.99 \text{ mA} \sim 1 \text{ mA}$$

 $S = \frac{I}{I - I_g} \times 100$
 $= \frac{1}{1 - 1 \times 10^{-3}} \times 100$
 $= \frac{100}{1000 - 1} \cong \frac{100}{1000} = 0.1 \Omega$

49. Ans: μ₀

Sol:
$$\oint B.d\lambda = \mu_0 I_{enclosed}$$
$$= \mu_0 [3 - 2]$$
$$= \mu_0$$

.

- 50. Ans: 20 V, 20 V and 10 V
 - Sol: When resistance is halved current will be doubled.

$$V_{R} = 2I \times \frac{R}{2} = 10 V$$
$$V_{L} = 2I \times X_{L} = 20 V$$
$$V_{C} = 2I \times X_{C} = 20 V$$

$$V_{R} = 2I \times \frac{R}{2} = 10 V$$

$$V_{L} = 2I \times X_{L} = 20 V$$

$$V_{C} = 2I \times X_{C} = 20 V$$
51. Ans: $30\pi V$
Sol: $E_{S} = \frac{d\phi}{dt} = \frac{d}{dt} MI_{0} \sin\omega t$

$$= MI_{0}\omega \cos\omega t$$

$$E_{S} is maximum when \cos\omega t = 1$$

$$\therefore E_{S} = MI_{0}\omega$$

$$= 150 \times 10^{-3} \times 2 \times 2\pi \times 30$$

$$= 30\pi V$$

52. Ans: 91%

Sol:
$$P_{in} = 220 \times 0.5 = 110 \text{ W}$$

 $P_{out} = 100 \text{ W}$
Efficiency $= \frac{P_{out}}{P_{in}} = \frac{100}{110} = 90.9\%$
 $= 91\%$

- 53. Ans: Its impedance is purely resistive.
- 54. Ans: 5.8 V/m
 - Sol: Energy transmitted per unit area / unit time = poynting's vector

 $S = \frac{1}{\mu_0} \times \stackrel{\rightarrow}{E} \times \stackrel{\rightarrow}{B}$ When power becomes four times both \overrightarrow{E} and \overrightarrow{B} will double. Hence 5.8 V/m

U c 55. Ans:

Sol: Theoretical

56. Ans: $\frac{L}{f_0} \left(\frac{D}{f_e} \right)$ **57.** Ans: 5000 Å Sol: $\frac{\Delta\lambda}{\lambda} = \frac{V}{C}$ $\frac{0.5 \text{ nm}}{\lambda} = \frac{300 \times 10^3}{3 \times 10^8}$ $\Rightarrow \lambda = 5000 \stackrel{0}{A}$ 58. Ans: 30 cm and 6 cm Sol: $\frac{f_0}{f_e} = 5$

 $f_0 + f_e = 36$ Solving $f_e = 6 \text{ cm}$ and $f_0 = 36$ cm

59. Ans: Concave only

60. Ans:
$$\frac{x(\mu_1 + \mu_2)}{2\mu_1\mu_2}$$

Sol:
$$\frac{x}{2} \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right)$$
$$= \frac{x}{2} \frac{(\mu_1 + \mu_2)}{\mu_1 \mu_2}$$

61. Ans:
$$c\sqrt{\frac{2m}{E}}$$

Sol: $E = \frac{hc}{\lambda_P}$ $\lambda_P = \frac{hc}{E}$ $\lambda_e = \frac{h}{P} = \frac{h}{\sqrt{2 \, mE}}$ $\frac{(1)}{(2)} \Rightarrow \frac{\lambda_{P}}{\lambda_{e}} = \frac{\frac{hc}{E}}{\frac{h}{\sqrt{2 \, mE}}}$

----(1)

----(2)

$$= \frac{c\sqrt{2mE}}{E} = c\sqrt{\frac{2m}{E}}$$

62. Ans: (1H², 1H³), (2He³, 1H³) and (79Au¹⁹⁷, 80Hg¹⁹⁸) 63. Ans: 2:1 о/т

Sol: For
$$X \rightarrow \frac{1}{16} = \left(\frac{1}{2}\right)^{8/T_X}$$

 $4 = \frac{8}{T_X} \qquad \dots (1)$
For $Y \rightarrow \frac{1}{256} = \left(\frac{1}{2}\right)^{8/T_Y}$
 $\Rightarrow 8 = \frac{8}{T_Y} \qquad \dots (2)$
 $\frac{(1)}{(2)} \frac{T_X}{T_Y} = \frac{2}{1}$

- 64. Ans: 1.17 MeV and 1.33 MeV in sucession
- **65.** Ans: $2 \times 10^9 / \text{m}^3$

- 66. Ans: 0.05 mA
- $I_{C} = 0.6 \text{ V}$ $I_{C} = \frac{0.6}{600} = 1 \text{ mA}$ $\therefore \beta = \frac{I_{C}}{I_{B}}$ $I_{B} = \frac{I_{C}}{\beta} = 0.05 \text{ mA}$ 67. Ans:

Due to filter circuit. Sol:

68. Ans: 1.5 A

- **69.** Ans: 0.05 and 1 \pm 0.010 MHz
 - Sol: $m = \frac{E_m}{E_c} = \frac{0.5}{10} = 0.05$ band frequency = 1 MHz ± 0.01 Mh = 1 ± 0.01 MHz
- **70.** Ans: $\sqrt{2Rh_r} + \sqrt{2Rh_R}$
- 71. Ans: 3.7 to 4.2 MHz
- 72. Ans: Twice the audio signal frequency.
- **73.** Ans: ${}^{16}O_8^{2-}$
 - Sol: For the species, ${}^{16}O_8^{2-}$, No. of electrons = 8 + 2 = 10 No. of protons = 8 No. of neutrons = 8
- **74**. Ans: 1 × 10²¹
 - Sol: Energy of a photon, $E = \frac{hc}{\lambda}$ = $\frac{6.626 \times 10^{-34} (Js) \times 3 \times 10^8 (ms^{-1})}{331.3 \times 10^{-9} (m)}$ = $6 \times 10^{-19} J$ No. of photons emitted per second = $\frac{600(J)}{6 \times 10^{-19} (J)} = 10^{21}$

75. Ans: 911.7 Å

Sol:
$$\overline{\upsilon} = R_{H} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$$

 $n_{1} = 1 \text{ and } n_{2} = \alpha$
 $\therefore \overline{\upsilon} = R_{H}$

$$\lambda = \frac{1}{R_{\rm H}} = \frac{1}{109678} \,{\rm cm}$$

= 9.117 × 10⁻⁶ cm
= 911.7 Å

- **76.** Ans: Acetylene molecule has three pi bonds and three sigma bonds.
 - Sol: Acetylene molecule has two pi bonds and three sigma bonds.
- **77.** Ans: N_2^+ becomes diamagnetic
 - Sol: N_2^+ is paramagnetic
- 78. Ans: Boron
 - Sol: BF₃ is a symmetrical molecule and hence dipole moment is zero.
- 79. Ans: 6, 4

Sol:
$$n_{N_2} = 2$$
 $n_{O_2} = 3$
 $P_{O_2} = \frac{3}{5} \times 10 = 6 \text{ atm}$
 $P_{N_2} = 4 \text{ atm}$

80. Ans: 1.673

Sol: Time required =
$$\frac{6.023 \times 10^{23}}{10^{20} \times 60 \times 60}$$
 hrs

81. Ans: II and V

= 1.673

- Sol: I & II are alkali metals II is more reactive. V is an inert gas, hence the least reactive non-metal.
- 82. Ans: I2
 - Sol: H_2O_2 in alkaline medium reduces I_2 to I^-
- 83. Ans: Cu₂O
 - Sol: C CO curve is below Cu Cu₂O curve at lower temperatures.
- 84. Ans: Rb
 - Sol: Rb produces red violet flame in flame test.
- 85. Ans: F
 - Sol: Oxidation state of fluorine in all its compounds is -1.

- **86.** Ans: H₃PO₃
 - Sol: H₃PO₃ is a dibasic acid.
- 87. Ans: 1 and 5
 - Sol: Mn exhibits +7 oxidation state. Zn exhibits +2 oxidation state.
- 88. Ans: +7
 - Sol: Maximum oxidation state of +7 is exhibited by Np and Pu
- **89.** Ans: -130
 - Sol: $H H + O = O \rightarrow H$ $\Delta H = 438 + 498 - (2 \times 464 + 138)$ = 936 - 1066 $= -130 \text{ kJ mol}^{-1}$
- 90. Ans: q_{rev} + w_{rev}
 - Sol: $\Delta U = q + w$ ΔU is a state function.
- 91. Ans: CH₃COONH₄
 - Sol: CH₃COONH₄ is a salt of weak acid and weak base.
- **92.** Ans: 1.0 × 10⁻⁵

Sol:
$$K_3 = \frac{1}{\sqrt{K_1}} \times K_2 = 1 \times 10^{-5}$$

93. Ans: 60 g

Sol:
$$\left| \frac{P^0 - P}{P^0} \right| \times 100 = \frac{w_2}{M_2} \times \frac{M_1}{w_1} \times 100 = 10$$

 $\frac{w_2}{60} \times \frac{18}{180} \times 100 = 10$
 $w_2 = 60 \text{ g}$

- 94. Ans: 0.1428 M
 - Sol: 500 ml 0.2 M is diluted to 700 mL

$$\therefore \text{ Final molarity} = \frac{1}{1.4} = 0.1428$$

- 95. Ans: CIO
 - Sol: In CIO⁻, chlorine is in +1 oxidation state, which is an intermediate one and hence an increase or decrease in oxidation state is possible.
- 96. Ans: 2:3:6

- Sol: Mole ratio of Al, Cu and Na deposited by 1 Faraday = $\frac{1}{3}$: $\frac{1}{2}$: 1 = 2:3:6
- 97. Ans: 2 x 0.693
 - Sol: For first order reaction, Rate = k $A'_0 = \frac{0.693}{t_{1/2}} \cdot A_0$ For zero order reaction, Rate = k $A^0_0 = \frac{A_0}{2t_{1/2}}$ Ratio in rates = 2 × 0.693
- **98.** Ans: -110 kJ mol⁻¹
 - Sol: $\Delta H = Ea_f Ea_r = -110 \text{ kJ mol}^{-1}$
- 99. Ans: Gas and liquid
 - Sol: Soap lather is a gas in liquid system.
- 100.Ans: ZSM-5
 - Sol: ZSM–5 (type of zeolite) used to convert alcohols directly into gasoline.
- 101. Ans: 2 and 4
 - Sol: [Co(NH₃)₆] [Cr(CN)₆] is an ionic compound. Both cation and anion carry 3 unit charges. It exhibits co–ordination isomerism.
- 102.Ans: Thiocyanato
 - Sol: Thiocyanate (CNS⁻) is an ambidentate ligand.
- 103. Ans: to decompose Na₂S and NaCN, if present
 - Sol: Na₂S and NaCN are decomposed by nitric acid to volatile H_2S and HCN.
- 104.Ans: 1, 3-butadiene
 - Sol: $CH_2 = CH CH = CH_2$ (1, 3-butadiene)
- **105.**Ans: (III) > (IV) > (II) > (I)
 - Sol: Order of decreasing acidity is ethyne > propyne > ethene > ethane
- 106. Ans: 2-Butene
 - Sol: 2-butene is a symmetrical alkene.
- 107. Ans: tert-butyl

t-butyl carbocation It can have 9 hyperconjugative structures.

108.Ans: (CH₃)₂CH – COOH

- Sol: Presence of electron donating groups decreases the acid strength of carboxylic acids.
- 109. Ans: Geometrical isomerism
 - Sol: Geometrical isomerism is due to restricted bond rotation.
- 110. Ans: 2, 8–Dimethyl 4, 6–decadiene

Sol:

$$\begin{array}{c} {}^{1}_{CH_{3}} - {}^{2}_{CH} - {}^{3}_{CH_{2}} - {}^{4}_{CH_{3}} - {}^{5}_{CH_{3}} - {}^{6}_{CH_{3}} - {}^{6}_{$$

- 111. Ans: Aromatic electrophilic substitution
 - Sol: Chlorination of benzene in presence of halogen carrier is an example of aromatic electrophilic substitution.
- 112. Ans: 1 and 4 only
 - Sol: Aryl halides are less reactive towards nucleophilic substitution because of the partial double bond character of carbon-halogen bonds. It is also partly due to repulsion between the electron cloud of the benzene ring and the nucleophile.
- 113. Ans: 2, 3 and 5 only
 - Sol: Aldol condensation is not given by aldehydes and ketones which do not contain α–hydrogen atoms.

- **114.** Ans: 1, 2 and 4
 - Sol: Compounds containing $CH_3 C$ or $CH_3 CHOH group give positive iodoform test.$

P

- 115. Ans: aniline
 - Sol: Since chlorobenzene does not undergo nucleophilic substitution reaction readily with potassium phthalimide, aniline cannot be prepared by Gabriel's phthalimide synthesis.
- 116. Ans: Aniline
 - Sol: Aniline is less basic than other given amines because of the delocalisation of the lone pair of electrons on nitrogen with the benzene ring.
- 117. Ans: Uracil
 - Sol: Uracil is present in RNA, not in DNA.
- **118.** Ans: β –D–galactose and β –D–glucose
 - Sol: Lactose is composed of β -D-galactose and β -D-glucose
- 119. Ans: Sucrolose
 - Sol: Sucrolose is a trichloroderivative of sucrose.
- 120. Ans: Cationic detergent

cetyl trimethyl ammonium bromide