SOLUTIONS \& ANSWERS FOR KERALA ENGINEERING
 ENTRANCE EXAMINATION-2010
 VERSION - A1

[PHYSICS \& CHEMISTRY]

1. Ans: Time

Sol: $\quad R C \rightarrow \frac{L}{R} \rightarrow$ both time constant.
2. Ans: 4
3. Ans: $25.5 \mathrm{~m} \mathrm{~s}^{-1}$

Sol: $\sqrt{\frac{\mathrm{u}^{2}+\mathrm{v}^{2}}{2}}=\sqrt{\frac{20^{2}+30^{2}}{2}}$
$=\sqrt{\frac{400+900}{2}}=\sqrt{650}$
$\cong 25.5 \mathrm{~m} \mathrm{~s}^{-1}$
4. Ans: $190.5 \mathrm{~km} / \mathrm{h}$

Sol:

Average speed $=\frac{\text { total distan ce }}{\text { total time }}$
$=\frac{4000}{21}$
$=190.5 \mathrm{~km} / \mathrm{h}$
5. Ans: Uniform acceleration

Sol: Theoretical.
6. Ans: $\frac{4 \mathrm{u}^{2}}{5 \mathrm{~g}}$

$$
\text { Sol: } \begin{aligned}
\frac{R}{H} \cdot 4 \cot \theta \Rightarrow \cot \theta & =\frac{1}{2} \\
\tan \theta & =2
\end{aligned}
$$

$\therefore \mathrm{R}=\frac{2 \mathrm{u}^{2} \sin \theta \cos \theta}{\mathrm{~g}}$
$=\frac{2 \mathrm{u}^{2} \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}}}{\mathrm{~g}}=\frac{4 \mathrm{u}^{2}}{5 \mathrm{~g}}$
7. Ans: $30 \mathrm{rad} / \mathrm{s}$

Sol: $\quad \mathrm{T}=\mathrm{mr} \omega^{2}$
$\omega^{2}=\frac{\mathrm{T}}{\mathrm{mr}}=900 \Rightarrow \omega=30 \mathrm{rad} / \mathrm{s}$
8. Ans: $4 \mathrm{~m} \mathrm{~s}^{-1}$ along x-direction.

Sol: $\quad \vec{r}=2 t^{2} \hat{i}+3 t \hat{j}+4 \hat{k}$
$v=\frac{d r}{d t}=4 t+\hat{i}+3 \hat{j}$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=4 \hat{\mathrm{i}} \Rightarrow 4 \mathrm{~m} / \mathrm{s}^{2}$ in the x -direction.
9. Ans: Inertia of motion.

Sol: Theoretical.
10. Ans: 192 N

$$
\text { Sol: } \begin{aligned}
\mathrm{T} & =m(g+a) \\
& =16 \times 12 \\
& =192 \mathrm{~N}
\end{aligned}
$$

11. Ans: Magnetic force
12. Ans: 4 W

Sol: $\quad P=\vec{F} \cdot \vec{v}=4 \mathrm{~W}$
13. Ans: $10^{-20} \mathrm{~J}$

Sol: Assuming hydrogen bond is broken energy required will be $10^{-20} \mathrm{~J}$
14. Ans: Work done by friction over a closed path is zero.
15. Ans: (11/12)L

Sol:

$x_{3}=\frac{5 L}{4}$
$\mathrm{X}_{2}=\mathrm{L}$
$x_{1}=\frac{L}{2}$
$\therefore X_{C M}=\frac{\mathrm{m}_{1} \mathrm{x}_{1}+\mathrm{m}_{2} \mathrm{x}_{2}+\mathrm{m}_{3} \mathrm{x}_{3}}{3 \mathrm{~m}}$
$=\frac{11 \mathrm{~L}}{12}$
16. Ans: 2 s

Sol: $\quad \tau=\mathrm{I} \alpha$
$6.9 \times 10^{2}=\frac{3 \times 10^{2} \times 4.6}{t}$
17. Ans: $\frac{3}{2} M R^{2}$ solving $t=2 \mathrm{~s}$

Sol:

18. Ans: $2.16 \times 10^{26} \mathrm{~kg}$

Sol: $\sqrt{\frac{2 \mathrm{GM}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}}} \cdot 3 \sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}}$
$\frac{M_{P}}{R_{P}}=9 \frac{M_{e}}{R_{e}}$
$\frac{M_{p}}{4 R_{e}}=9 \frac{M_{e}}{R_{e}}$
$\therefore \mathrm{M}_{\mathrm{P}}=36 \mathrm{M}_{\mathrm{e}}=36 \times 6 \times 10^{24}$
$=2.16 \times 10^{26} \mathrm{~kg}$
19. Ans: Half the potential energy of the satellite

Sol:
$P \cdot E=-\frac{G M m}{r}$
$T . E=-\frac{G M m}{2 r}$
20. Ans: $\frac{m g R}{12}$

Sol: Energy required = Final energy initial energy
$=-\frac{G M m}{2(3 R)}-\left(-\frac{G M m}{2(2 R)}\right)$
$=\frac{\mathrm{GMm}}{2 \mathrm{R}}\left[\frac{1}{2}-\frac{1}{3}\right]$
$=\frac{G M m}{12 R}=\frac{g R^{2} m}{12 R}$
$=\frac{\mathrm{mgR}}{12}$
21. Ans: 24 cc

Sol: $B=\frac{1}{\text { compressibility }}=\frac{P V}{d V}$
$\frac{1}{6 \times 10^{-10}}=\frac{4 \times 10^{7} \times 1}{\mathrm{dV}}$
$d V=24 \times 10^{-3}$ litres
$=24 \mathrm{cc}$
22. Ans: Carburetor of automobile
23. Ans: Shearing stress there is change in volume.
24. Ans: Reynold's number
25. Ans: 4800 K

Sol: $\quad \sqrt{\frac{3 R T_{H}}{M_{H}}}=\sqrt{\frac{3 R T_{0}}{M_{0}}}$
$\frac{T_{H}}{M_{H}}=\frac{T_{0}}{M_{0}}$
$\frac{300}{2}=\frac{T_{0}}{32}$
$\mathrm{T}_{0}=16 \times 300=4800 \mathrm{~K}$
26. Ans: Inversely proportional to number of molecules per unit volume

Sol: $\quad \lambda=\frac{1}{\sqrt{2} \pi n d^{2}}$
$\mathrm{n}=$ number of molecules / unit volume $d=$ diameter of the molecule
27. Ans: 150 J

Sol: $\frac{1}{3}=\frac{\theta_{2}}{\theta_{1}-\theta_{2}}$
$=\frac{\theta_{2}}{200-\theta_{2}}$
$\therefore \theta_{2}=50$
$\therefore \mathrm{W}=200-50=150 \mathrm{~J}$
28. Ans: 3 R

Sol: Heat capacity per mole of water $=C_{V}$
$\frac{f}{2} R=\frac{36}{2} R=3 R$
29. Ans: 75

Sol: No. of beats in $1 \mathrm{~s}=1.25$
\therefore in 1 minute $=1.25 \times 60=75$
30. Ans: Damped oscillator.
31. Ans: 20

Sol: $\quad \frac{1}{2} k A^{2}=4$
$\mathrm{A}^{2}=\frac{8}{800}=\frac{1}{100}$
$A=\frac{1}{10}=0.1 \mathrm{~m}$
$a_{\max }=\omega^{2} A$
$=\frac{\mathrm{k}}{\mathrm{m}} \cdot \mathrm{A}$
$=\frac{800}{4} \times 0.1=20 \mathrm{~m} / \mathrm{s}^{2}$
32. Ans: Interference
33. Ans: 320 Hz

Sol: Fundamental frequency
$\mathrm{f}_{0}=\frac{\mathrm{v}}{4 \mathrm{~L}}=\frac{320}{4 \times 1}=80 \mathrm{~Hz}$
So it can resonate with $\mathrm{f}_{0}, 3 \mathrm{f}_{0}, 5 \mathrm{f}_{0}, 7 \mathrm{f}_{0}-\cdots--$
\therefore cannot resonate with 320 Hz .
34. Ans: 240 Hz

Sol: $f^{\prime}=\frac{v+v_{L}}{v} \times f$
$=\frac{330+30}{330} \times 220$
$=240 \mathrm{~Hz}$
35. Ans: $n^{5 / 3}: 1$

Sol: Capacitance of big drop $=\mathrm{C}^{\prime}=\mathrm{n}^{1 / 3} \mathrm{C}$
Potential of big drop $\mathrm{V}^{\prime}{ }_{2}=\mathrm{n}^{2 / 3} \mathrm{~V}$
\therefore Energy of big drop $=\frac{1}{2} C^{\prime} V^{\prime 2}$
$=\frac{1}{2} n^{1 / 3} C\left(n^{2 / 3} V\right)^{2}$
$=\mathrm{n}^{5 / 3} \frac{1}{2} \mathrm{CV}^{2}$
\therefore Ratio $=\mathrm{n}^{5 / 3}: 1$
36. Ans: $\frac{R_{2}}{R_{1}}$

Sol: Potential is same
$\therefore \mathrm{k} \frac{\mathrm{Q}_{1}}{\mathrm{R}_{1}}=\mathrm{k} \frac{\mathrm{Q}_{2}}{\mathrm{R}_{2}}$
$\frac{4 \pi \mathrm{R}_{1}^{2} \sigma_{1}}{\mathrm{R}_{1}}=\frac{4 \pi \mathrm{R}_{2}^{2} \sigma_{2}}{\mathrm{R}_{2}}$
$\therefore \frac{\sigma_{1}}{\sigma_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
37. Ans: 2 V

Sol:

Charge across the combination of $2 \mu \mathrm{~F}$ and $3 \mu \mathrm{~F}=$ charge across $3 \mu \mathrm{~F}$
$\therefore \frac{2 \times 3}{2+3} \mu \mathrm{~F} \times 5=3 \mu \mathrm{~F} \times \mathrm{V}_{1}$
$\therefore \mathrm{V}_{1}=2 \mathrm{~V}$
38. Ans: $\frac{20}{21} \mathrm{~m}$

Sol:

Let the potential be zero at P and Q.
Then solving for x_{1}
$\frac{K \times 5}{x_{1}}=\frac{2}{\left(1-x_{1}\right)}$
$\therefore \mathrm{x}_{1}=\frac{5}{7}$
Similarly, $\frac{K \times 5}{1+x_{2}}=\frac{K \times 2}{x_{2}}$
$\therefore \mathrm{x}_{2}=\frac{2}{3}$
Separation $\mathrm{PQ}=1-\left(\frac{2}{7}+\frac{2}{3}\right)$
$=\frac{20}{21}$
39. Ans: 10^{12}

Sol: $q E=m g$
$\mathrm{n} \times 1.6 \times 10^{-19} \times 100$
$=1.6 \times 10^{-6} \times 10$
$\mathrm{n}=10^{12}$
40. Ans: 4 V

Sol: $I=\frac{E}{R_{\text {eff }}}=\frac{12}{24}=\frac{1}{2} \mathrm{~A}$
$\therefore \mathrm{E}=\frac{1}{2} \times 8=4 \mathrm{~V}$
41. Ans: 20Ω

Sol: $500=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{20000}{\mathrm{R}}$
$\mathrm{R}=20 \Omega$
$I^{2} R=500$
$\mathrm{I}=5 \mathrm{~A}$
$\therefore \frac{200}{\left(20+\mathrm{R}_{1}\right)}=5$
Solving, $\mathrm{R}_{1}=20 \Omega$
42. Ans: 0 V

Sol:

43. Ans: Nichrome
44. Ans: $\frac{1}{3} \mathrm{~A}$

Sol: $\quad E_{\text {eff }}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}=2 \mathrm{~V}$
$\mathrm{I}=\frac{\mathrm{E}_{\text {eff }}}{\mathrm{R}_{\text {eff }}}=\frac{2}{5+1}=\frac{2}{6}=\frac{1}{3} \mathrm{~A}$
45. Ans: $2.5 \times 10^{5} \mathrm{~A} / \mathrm{m}$

Sol: $\quad \mathrm{I}=\chi \mathrm{H}$
$=\left(\mu_{r}-1\right) \times n I$
$=499 \times 500 \times 1$
$=2.495 \times 10^{5}$
$\cong 2.5 \times 10^{5} \mathrm{~A} / \mathrm{m}$
46. Ans: The resultant magnetic moment in an atom of a diamagnetic substance is zero.
47. Ans: 1.25 m

Sol: $B=\frac{\mu_{0} I}{2 r}=\frac{\mu_{0} q f}{2 r}$
$6.28=\frac{4 \pi \times 10^{-7} \times 2 \times 10^{-6} \times 6.25 \times 10^{12}}{2 \mathrm{r}}$
$=\frac{157.08 \times 10^{-1}}{2 \mathrm{r}}$
$r=\frac{157.08 \times 10^{-1}}{2 \times 6.28}$
$=1.25 \mathrm{~m}$
48. Ans: 0.1Ω

Sol: $\quad I_{g}=\frac{10}{10.1} \mathrm{~mA}=0.99 \mathrm{~mA} \sim 1 \mathrm{~mA}$
$\mathrm{S}=\frac{\mathrm{I}}{\mathrm{I}-\mathrm{I}_{\mathrm{g}}} \times 100$
$=\frac{1}{1-1 \times 10^{-3}} \times 100$
$=\frac{100}{1000-1} \cong \frac{100}{1000}=0.1 \Omega$
49. Ans: μ_{0}

Sol: $\oint \mathrm{B} . \mathrm{d} \lambda=\mu_{0} \mathrm{I}_{\text {enclosed }}$
$=\mu_{0}[3-2]$
$=\mu_{0}$
50. Ans: $20 \mathrm{~V}, 20 \mathrm{~V}$ and 10 V

Sol: When resistance is halved current will be doubled.
$V_{R}=2 I \times \frac{R}{2}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}=2 \mathrm{I} \times \mathrm{X}_{\mathrm{L}}=20 \mathrm{~V}$
$V_{C}=2 \mathrm{I} \times \mathrm{X}_{\mathrm{C}}=20 \mathrm{~V}$
51. Ans: $30 \pi \mathrm{~V}$

Sol: $\quad E_{S}=\frac{d \phi}{d t}=\frac{d}{d t} M I_{0} \sin \omega t$
$=\mathrm{MI}_{0} \omega \cos \omega \mathrm{t}$
E_{S} is maximum when $\cos \omega t=1$
$\therefore \mathrm{E}_{\mathrm{S}}=\mathrm{MI}_{0} \omega$
$=150 \times 10^{-3} \times 2 \times 2 \pi \times 30$
$=30 \pi \mathrm{~V}$
52. Ans: 91\%

Sol: $\quad P_{\text {in }}=220 \times 0.5=110 \mathrm{~W}$
$\mathrm{P}_{\text {out }}=100 \mathrm{~W}$
Efficiency $=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{100}{110}=90.9 \%$
$\cong 91 \%$
53. Ans: Its impedance is purely resistive.
54. Ans: $5.8 \mathrm{~V} / \mathrm{m}$

Sol: Energy transmitted per unit area / unit time = poynting's vector
$S=\frac{1}{\mu_{0}} \times \vec{E} \times \vec{B}$
$=\frac{c \sqrt{2 m E}}{E}=c \sqrt{\frac{2 m}{E}}$
When power becomes four times both
\vec{E} and \vec{B} will double. Hence $5.8 \mathrm{~V} / \mathrm{m}$
55. Ans: $\frac{U}{C}$

Sol: Theoretical
56. Ans: $\frac{L}{f_{0}}\left(\frac{D}{f_{e}}\right)$
57. Ans: 5000 A

Sol: $\frac{\Delta \lambda}{\lambda}=\frac{v}{C}$

$$
\begin{aligned}
& \frac{0.5 \mathrm{~nm}}{\lambda}=\frac{300 \times 10^{3}}{3 \times 10^{8}} \\
& \Rightarrow \lambda=5000 \mathrm{~A}
\end{aligned}
$$

58. Ans: 30 cm and 6 cm

Sol: $\frac{f_{0}}{f_{e}}=5$
$f_{0}+f_{e}=36$
Solving $\mathrm{f}_{\mathrm{e}}=6 \mathrm{~cm}$ and $\mathrm{f}_{0}=36 \mathrm{~cm}$
59. Ans: Concave only
60. Ans: $\frac{x\left(\mu_{1}+\mu_{2}\right)}{2 \mu_{1} \mu_{2}}$

$$
\text { Sol: } \begin{aligned}
& \frac{x}{2}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right) \\
& =\frac{x}{2} \frac{\left(\mu_{1}+\mu_{2}\right)}{\mu_{1} \mu_{2}}
\end{aligned}
$$

61. Ans: $c \sqrt{\frac{2 m}{E}}$

Sol: $E=\frac{h c}{\lambda_{P}}$
$\lambda_{\mathrm{P}}=\frac{\mathrm{hc}}{\mathrm{E}}$
$\lambda_{\mathrm{e}}=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
62. Ans: $\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{3}\right)$ and $\left(79 \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$
63. Ans: $2: 1$

Sol: For $X \rightarrow \frac{1}{16}=\left(\frac{1}{2}\right)^{8 / T_{X}}$
$4=\frac{8}{T_{X}}$
For $Y \rightarrow \frac{1}{256}=\left(\frac{1}{2}\right)^{8 / T_{Y}}$
$\Rightarrow 8=\frac{8}{T_{Y}}$
(1) $\frac{T_{X}}{(2)} \frac{2}{T_{Y}}=\frac{2}{1}$
64. Ans: 1.17 MeV and 1.33 MeV in sucession
65. Ans: $2 \times 10^{9} / \mathrm{m}^{3}$

Sol: $\quad n_{i}^{2}=n_{e} n_{h}$
$\left(10^{16}\right)^{2}=n_{e} \times 5 \times 10^{22}$
Solving $n_{e}=2 \times 10^{9} / \mathrm{m}^{3}$
66. Ans: 0.05 mA

Sol: $I_{C} R_{C}=0.6 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=\frac{0.6}{600}=1 \mathrm{~mA}$

$$
\therefore \beta=\frac{I_{C}}{I_{B}}
$$

$$
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{I}_{\mathrm{C}}}{\beta}=0.05 \mathrm{~mA}
$$

67. Ans:

Sol: Due to filter circuit.
68. Ans: 1.5 A

Sol:

$\mathrm{I}_{1}=\frac{10}{20}=0.5 \mathrm{~A}$
$\mathrm{I}_{2}=\frac{10}{10}=1 \mathrm{~A}$
\therefore total current $=1.5 \mathrm{~A}$
69. Ans: 0.05 and $1 \pm 0.010 \mathrm{MHz}$

Sol: $m=\frac{E_{m}}{E_{c}}=\frac{0.5}{10}=0.05$
band frequency $=1 \mathrm{MHz} \pm 0.01 \mathrm{Mh}$
$=1 \pm 0.01 \mathrm{MHz}$
70. Ans: $\sqrt{2 R h_{r}}+\sqrt{2 R h_{R}}$
71. Ans: 3.7 to 4.2 MHz
72. Ans: Twice the audio signal frequency.
73. Ans: ${ }^{16} \mathrm{O}_{8}^{2-}$

Sol: For the species, $\quad{ }^{16} \mathrm{O}_{8}^{2-}$
No. of electrons $=8+2=10$
No. of protons $=8$
No. of neutrons $=8$
74. Ans: 1×10^{21}

Sol: Energy of a photon, $E=\frac{h c}{\lambda}$
$=\frac{6.626 \times 10^{-34}(\mathrm{Js}) \times 3 \times 10^{8}\left(\mathrm{~ms}^{-1}\right)}{331.3 \times 10^{-9}(\mathrm{~m})}$
$=6 \times 10^{-19} \mathrm{~J}$
No. of photons emitted per second
$=\frac{600(\mathrm{~J})}{6 \times 10^{-19}(\mathrm{~J})}=10^{21}$
75. Ans: $911.7{ }^{\circ}$

$$
\begin{aligned}
\text { Sol: } \quad \bar{v} & =R_{H}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \\
\mathrm{n}_{1} & =1 \text { and } \mathrm{n}_{2}=\alpha \\
\therefore & \bar{v}=\mathrm{R}_{\mathrm{H}}
\end{aligned}
$$

$\lambda=\frac{1}{\mathrm{R}_{\mathrm{H}}}=\frac{1}{109678} \mathrm{~cm}$
$=9.117 \times 10^{-6} \mathrm{~cm}$
$=911.7{ }^{\circ} \mathrm{A}$
76. Ans: Acetylene molecule has three pi bonds and three sigma bonds.

Sol: Acetylene molecule has two pi bonds and three sigma bonds.
77. Ans: N_{2}^{+}becomes diamagnetic

Sol: $\quad \mathrm{N}_{2}^{+}$is paramagnetic
78. Ans: Boron

Sol: $\quad \mathrm{BF}_{3}$ is a symmetrical molecule and hence dipole moment is zero.
79. Ans: 6,4

Sol: $\quad \mathrm{n}_{\mathrm{N}_{2}}=2 \quad \mathrm{n}_{\mathrm{O}_{2}}=3$
$\mathrm{P}_{\mathrm{O}_{2}}=\frac{3}{5} \times 10=6 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{N}_{2}}=4 \mathrm{~atm}$
80. Ans: 1.673

Sol: Time required $=\frac{6.023 \times 10^{23}}{10^{20} \times 60 \times 60} \mathrm{hrs}$ $=1.673$

81. Ans: II and V

Sol: I \& II are alkali metals
II is more reactive.
V is an inert gas, hence the least reactive non-metal.
82. Ans: I_{2}

Sol: $\mathrm{H}_{2} \mathrm{O}_{2}$ in alkaline medium reduces I_{2} to I^{-}
83. Ans: $\mathrm{Cu}_{2} \mathrm{O}$

Sol: $\quad \mathrm{C}-\mathrm{CO}$ curve is below $\mathrm{Cu}-\mathrm{Cu}_{2} \mathrm{O}$ curve at lower temperatures.
84. Ans: Rb

Sol: Rb produces red violet flame in flame test.
85. Ans: F

Sol: Oxidation state of fluorine in all its compounds is -1 .
86. Ans: $\mathrm{H}_{3} \mathrm{PO}_{3}$

Sol: $\quad \mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid.
87. Ans: 1 and 5

Sol: Mn exhibits +7 oxidation state.
Zn exhibits +2 oxidation state.
88. Ans: +7

Sol: Maximum oxidation state of +7 is exhibited by Np and Pu
89. Ans: -130

Sol:

90. Ans: $q_{r e v}+w_{\text {rev }}$

Sol: $\quad \Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$
$\Delta \mathrm{U}$ is a state function.
91. Ans: $\mathrm{CH}_{3} \mathrm{COONH}_{4}$

Sol: $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is a salt of weak acid and weak base.
92. Ans: 1.0×10^{-5}

Sol: $\quad K_{3}=\frac{1}{\sqrt{\mathrm{~K}_{1}}} \times \mathrm{K}_{2}=1 \times 10^{-5}$
93. Ans: 60 g

Sol: $\left[\frac{P^{0}-P}{P^{0}}\right] \times 100=\frac{w_{2}}{M_{2}} \times \frac{M_{1}}{w_{1}} \times 100=10$
$\frac{w_{2}}{60} \times \frac{18}{180} \times 100=10$
$\mathrm{w}_{2}=60 \mathrm{~g}$
94. Ans: 0.1428 M

Sol: $\quad 500 \mathrm{ml} 0.2 \mathrm{M}$ is diluted to 700 mL \therefore Final molarity $=\frac{0.2}{1.4}=0.1428$
95. Ans: ClO^{-}

Sol: In ClO^{-}, chlorine is in +1 oxidation state, which is an intermediate one and hence an increase or decrease in oxidation state is possible.

Sol: Mole ratio of Al, Cu and Na deposited
by 1 Faraday $=\frac{1}{3}: \frac{1}{2}: 1=2: 3: 6$
97. Ans: 2×0.693

Sol: For first order reaction,
Rate $=k A_{0}^{\prime}=\frac{0.693}{t_{1 / 2}} \cdot A_{0}$
For zero order reaction,
Rate $=k A_{0}^{0}=\frac{A_{0}}{2 t_{1 / 2}}$
Ratio in rates $=2 \times 0.693$
98. Ans: $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Sol: $\quad \Delta \mathrm{H}=E \mathrm{Ea}_{\mathrm{f}}-\mathrm{Ea}_{\mathrm{r}}=-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
99. Ans: Gas and liquid

Sol: Soap lather is a gas in liquid system.
100.Ans: ZSM-5

Sol: ZSM-5 (type of zeolite) used to convert alcohols directly into gasoline.
101. Ans: 2 and 4

Sol: $\quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ is an ionic compound. Both cation and anion carry 3 unit charges. It exhibits co-ordination isomerism.
102.Ans: Thiocyanato

Sol: Thiocyanate $\left(\mathrm{CNS}^{-}\right)$is an ambidentate ligand.
103. Ans: to decompose $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN , if present

Sol: $\quad \mathrm{Na}_{2} \mathrm{~S}$ and NaCN are decomposed by nitric acid to volatile $\mathrm{H}_{2} \mathrm{~S}$ and HCN .
104.Ans: 1, 3-butadiene

Sol: $\quad \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$ (1, 3-butadiene)
105.Ans: (III) $>$ (IV) $>$ (II) $>$ (I)

Sol: Order of decreasing acidity is ethyne > propyne > ethene > ethane
106. Ans: 2-Butene

Sol: 2-butene is a symmetrical alkene.
107. Ans: tert-butyl
96. Ans: $2: 3: 6$

Sol:

t-butyl carbocation It can have 9 hyperconjugative structures.
108.Ans: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{COOH}$

Sol: Presence of electron donating groups decreases the acid strength of carboxylic acids.
109. Ans: Geometrical isomerism

Sol: Geometrical isomerism is due to restricted bond rotation.
110. Ans: 2, 8-Dimethyl 4, 6-decadiene

111. Ans: Aromatic electrophilic substitution

Sol: Chlorination of benzene in presence of halogen carrier is an example of aromatic electrophilic substitution.
112. Ans: 1 and 4 only

Sol: Aryl halides are less reactive towards nucleophilic substitution because of the partial double bond character of carbon-halogen bonds. It is also partly due to repulsion between the electron cloud of the benzene ring and the nucleophile.
113. Ans: 2,3 and 5 only

Sol: Aldol condensation is not given by aldehydes and ketones which do not contain α-hydrogen atoms.
114. Ans: 1, 2 and 4

Sol:
 $\mathrm{CH}_{3}-\mathrm{CHOH}$ - group give positive iodoform test.
115. Ans: aniline

Sol: Since chlorobenzene does not undergo nucleophilic substitution reaction readily with potassium phthalimide, aniline cannot be prepared by Gabriel's phthalimide synthesis.
116. Ans: Aniline

Sol: Aniline is less basic than other given amines because of the delocalisation of the lone pair of electrons on nitrogen with the benzene ring.
117. Ans: Uracil

Sol: Uracil is present in RNA, not in DNA.
118. Ans: β-D-galactose and $\beta-$ - - glucose

Sol: Lactose is composed of $\beta-D-$ galactose and β-D-glucose
119. Ans: Sucrolose

Sol: Sucrolose is a trichloroderivative of sucrose.
120. Ans: Cationic detergent

Sol:

cetyl trimethyl ammonium bromide

