_				
Register Number				

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E - ECE

Title of the Paper: Network Analysis and Synthesis Max. Marks: 80

Sub. Code :6C0053 Time : 3 Hours
Date :07/11/2009 Session :AN

PART - A
$$(10 \times 2 = 20)$$

Answer ALL the Questions

- 1. Draw the pole zero plot for the following network function $N(S) = \frac{(s+1)(s+5)}{(s+4)(s+6)}$
- 2. Write the basic 'Y' parameter equations and draw its equivalent circuit.
- 3. Draw the block diagram of the two port network.
- 4. Define Barlett Bisection theorem.
- 5. When will you call a function to be a positive real function?
- 6. Check the positive realness of the function

$$N(S) = \frac{(s+4)}{s^2 + 2s + 1}$$

- 7. What are the disadvantages of constant K filter?
- 8. What are the salient features of Butterworth filter?

- 9. List out the basic components used in designing attenuators?
- 10. What are the characteristics of equalizers?

PART – B
$$(5 \times 12 = 60)$$

Answer ALL the Questions

11. Find the voltage transfer function

 $G_{21}(S) = V_2(S) / V_1(S)$ for the network shown

12. Find the Z-parameter of the network

13. Synthesis lattice network terminated in 1 ohm resistor if its transfer impedance is

$$Z_{12} = (-S+1) / 4S^2 + 3S+1$$

(or)

- 14. Explain interconnection of two port networks through cascade connection and series connection
- 15. Test whether the following polynomials are Hurwitz polynomials'

(a)
$$f(s) = s^4 + 3s^3 + 4s^2 + 3s + 1$$

(b)
$$f(s) = s^3 + 2s^2 + s + 2$$

(or)

16. Find the first foster form and second cauer form of the given impedance function

$$Z(S) = \frac{2(S+1)(S+3)}{(S+2)(S+6)}$$

- 17. The specification of a band pass filter are $\alpha_P \le 30 \text{ db } 50 \text{Krad} < W < 72 \text{Krad}$ $\alpha_S \ge 40 \text{ db } W < 30 \text{Krad}, W > 120 \text{Krad}$ Find its transfer function.
- 18. The specification of a LPF are $\alpha \le 1$ db for $f \le 4Mhz$ $\alpha \ge 60db$ for $f \ge 8Mhz$ Find its transfer function of Chebyshev filter.
- 19. How attenuation is represented mathematically?

 Derive the expression for attenuation and phase constant for a

 T-network

(or)

20. Explain equalizers and its types in detail