CE7-R3: REAL TIME SYSTEMS

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

- a) What are the five main steps that together constitute "task switching"?
- b) Explain the necessity of precedence graph with an example.
- c) What is the difference between RTOS and general-purpose operating systems?
- d) Why is it difficult to predict response time in real time system? How do you overcome the problem?
- e) How is wormhole routing used for packet transmission in a multihop network?
- f) How does absolute and relative consistency differ from each other?
- g) List atleast three uni-processor scheduling algorithms and explain then briefly.

(7x4)

2.

- a) What is Task scheduling? Explain it with a timing diagram.
- b) What are the properties defining performance measures for real time system?
- c) What are the components of a real time system? Give a diagrammatic representation.

(8+4+6)

3.

- a) How faults are classified and explain them with a state diagram.
- b) How can a real time system be kept running despite the failure of some of its parts? Give al least four methods briefly.
- c) List out the timing specification a good real-time language should hold.
- d) Give a note on advantages and disadvantage of hardware synchronization.

(6+4+4+4)

4.

- a) Which is the protocol widely sued for single channel broadcast network and the bus and ring topology? Explain and draw the algorithm of this protocol.
- b) Explain Time-token protocol in detail with a flow chart.
- c) What are the various forms of error recovery?

(7+7+4)

5.

- a) Prove that the Rate monotonic algorithm is an optimal static-priority algorithm.
- b) Comment on the suitability of FDDI protocol for the real time applications.
- c) Discuss the issues in dynamic scheduling.

- 6.
- a) Why a Real time databases should compromise some of the ACID properties of conventional databases?
- b) Explain the concurrency control issues for databases.
- c) What are the features of network topology for a distributed system, and illustrate few topologies neatly.

(4+4+10)

7.

a) Determine whether the following set of periodic tasks is schedulable on a uniprocessor using RMA ignoring context switch overhead.

Task	Processing-time (mSec)	Period (mSec)
T1	38	112
T2	60	190
Т3	72	425

Now, Suppose context switch overhead of 1 milli Seconds is to be taken into account, determine the schedulability.

b) Explain static pairing.

Draw the schematic of a timing estimation system and briefly explain the same.

(8+5+5)