|                    | , |  | 1219 |  |  |  |  |  |
|--------------------|---|--|------|--|--|--|--|--|
| Register<br>Number |   |  |      |  |  |  |  |  |

# **MATHEMATICS**

(English Version)

Time Allowed :  $2\frac{1}{2}$  Hours ] [ Maximum Marks : 100

- Instructions: i) This question paper consists of four Parts. Read the note carefully under each Part before answering them.
  - ii) Write legibly. The rough work should be shown at the bottom of the pages of the answer-book.
  - iii) Only the logarithmic and trigonometric tables issued at the centre should be used.

## PART - A

(Marks: 15)

- Note: i) This part contains fifteen questions. Answer all the questions.
  - ii) Each question carries one mark.
  - iii) Each question has *four* choices. Choose the correct or the most appropriate one among them and write down the alphabet indicating the response.  $15 \times 1 = 15$

| 1. | The | common | difference | of | the | A.P. | . 5 | + | 9 | + | 13 | + | 17 | + | <br>is |
|----|-----|--------|------------|----|-----|------|-----|---|---|---|----|---|----|---|--------|
|    |     |        | -          |    |     |      |     |   |   |   |    |   |    |   |        |

a) 3

b) 2

c) 5

d) 4.

- 2. The value of  $5 \oplus_4 2$  is
  - a) 3

b) 4

c) 5

d) 6.

- 3. Volume of a hemisphere is
  - a)  $\frac{4}{3}\pi r^3$  cu.units
  - b)  $\frac{2}{3}\pi r^3$  cu.units
- c)  $\frac{1}{3}\pi r^3$  cu.units
  - d)  $\frac{1}{3}\pi r^2 h$  cu.units.
- $4 \quad A \cup A' =$ 
  - a) A

(c)

c) A

- d) ξ.
- 5. If  $R = \{ (a, r), (a, s), (b, r), (b, s) \}$ , then the domain is
  - a)  $\{a, b\}$

b) {b, s}

c)  $\{r, s\}$ 

- d)  $\{a, r\}$ .
- 6. The value of  $\frac{x}{5-x} \frac{5}{5-x}$  is
  - a) 1

b) - 1

c) x-5

- d) 5x
- 7. If the roots are equal, then the value of  $b^2 4ac$  is
  - a) 0

b) > 0

c) < 0

- d) 4.
- 8. A point that satisfies  $2x + 3y \le 6$  is
  - a) (7,0)

b) (3, -3)

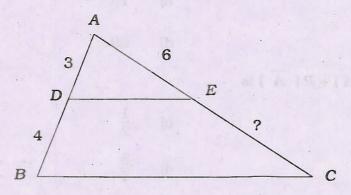
c) (4,2)

d) (-1,4).

| 9.  | Ang                                                                                  | angles in the same segment of a circle are                                    |        |                                   |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|-----------------------------------|--|--|--|--|--|--|--|
|     | a)                                                                                   | equal                                                                         | b)     | unequal                           |  |  |  |  |  |  |  |
|     | c)                                                                                   | complementary                                                                 | d)     | supplementary.                    |  |  |  |  |  |  |  |
| 10. | The                                                                                  | number of tangents that can be de                                             | rawn f | rom a point outside the circle is |  |  |  |  |  |  |  |
|     | a)                                                                                   | 1                                                                             | b)     | 0                                 |  |  |  |  |  |  |  |
|     | c)                                                                                   | 2 in part of a most days by                                                   | d)     | 4. A A SA to must div a i a       |  |  |  |  |  |  |  |
| 11. | If th                                                                                | If the straight line $4x - 3y = k$ passes through the point (1, 1), then k is |        |                                   |  |  |  |  |  |  |  |
|     | a)                                                                                   | 2                                                                             | b)     | <b>- 2</b>                        |  |  |  |  |  |  |  |
|     | c)                                                                                   | d bpg and it is a street the                                                  | d)     |                                   |  |  |  |  |  |  |  |
| 12. | 2. The equation of a line parallel to y-axis and passing through the point (3, 2) is |                                                                               |        |                                   |  |  |  |  |  |  |  |
|     | a)                                                                                   | y-2=0                                                                         | b)     | x-2=0                             |  |  |  |  |  |  |  |
|     | c)                                                                                   | y-3=0                                                                         | d)     | x-3=0.                            |  |  |  |  |  |  |  |
| 13. | If $\sin \theta = \tan \theta$ , then the value of $\theta$ is                       |                                                                               |        |                                   |  |  |  |  |  |  |  |
|     | a)                                                                                   | 45°                                                                           | b)     | 90°                               |  |  |  |  |  |  |  |
|     | c)                                                                                   | 60°                                                                           | d)     | O° years pro diagram de A         |  |  |  |  |  |  |  |
| 14. | If th                                                                                | e variance of a data is 1.69, then t                                          | he sta | ndard deviation is                |  |  |  |  |  |  |  |
|     | a)                                                                                   | .1.3                                                                          | b)     | 13                                |  |  |  |  |  |  |  |
|     | c)                                                                                   | 3.38                                                                          | d)     | 69.                               |  |  |  |  |  |  |  |
| 15. | The                                                                                  | sum of $P(A) + P(\overline{A})$ is                                            |        |                                   |  |  |  |  |  |  |  |
|     | a)                                                                                   | 1                                                                             | b)     | $\frac{1}{2}$                     |  |  |  |  |  |  |  |
|     | c)                                                                                   | $\frac{1}{4}$                                                                 | d)     | $\frac{3}{4}$ .                   |  |  |  |  |  |  |  |
|     |                                                                                      |                                                                               |        |                                   |  |  |  |  |  |  |  |

#### PART - B

(Marks: 20)


Note: i) Answer any ten from the fifteen questions.

ii) Show all the steps.

iii) Each question carries two marks.

 $10 \times 2 = 20$ 

- 16. Solve:  $4x \equiv 2 \pmod{3}$ .
- 17. The 7th term of an A.P. is -15 and 16th term is 30. Find the common difference.
- 18. A cone is of radius 7 cm and its slant height is 25 cm. Find the curved surface area of the cone.
- 19. If  $A = \{a, b, c, d, e\}$ ,  $B = \{b, d, f, g\}$  and  $C = \{b, e, f, h\}$ , then find the set of  $A \cup (B \cap C)$ .
- 20. In the function  $f(x) = x^2 x + 7$ , the domain of f is  $\{1, 3, -3\}$ . Find the range of f.
- 21. If (x+1) is a factor of  $x^3 + mx^2 + 19x + 12$ , determine the value of m.
- 22. Simplify:  $\frac{5x+15}{2y-8} \times \frac{3y-12}{4x+12}$ .
- 23. Define Network.
- 24. A chord is 15 cm away from the centre of a circle of radius 17 cm. Find the length of the chord.
- 25. In the triangle ABC, DE | BC. Find EC.



- 26. Find the intercepts made by the straight line 3x 2y 6 = 0 on the axes of co-ordinates.
- 27. The centre of a circle is (6, 4). A diameter of the circle has its one end at the origin. Find its other end.
- 28. If  $\sin \theta = \cos \theta$ , where  $\theta$  is an acute angle, find the value of  $2 \tan^2 \theta \sin^2 \theta 1$ .
- 29. Evaluate coefficient of variation for some data whose standard deviation is 14 and arithmetic mean is 70.
- 30. What is the probability that a leap year selected at random will contain 53 Sundays?

## PART - C

(Marks: 45)

- Note: i) This part contains ten questions.
  - ii) Choose either of the alternatives in each question and answer any *nine* questions.
  - iii) Steps and diagrams should be shown.
  - iv) Each question carries five marks.

 $9 \times 5 = 45$ 

31. The fourth and the seventh terms of a G.P. are 27 and 729 respectively. Find the first term and the common ratio.

OR

Find the sum of all numbers between 200 and 400 divisible by 7.

1319

32. A hemispherical bowl of radius 30 cm is filled with soap paste. If this paste is made into cylindrical soap cakes each of radius 5 cm and height 2 cm, how many cakes do we get?

OR

A toy is in the form of a cone mounted on a hemisphere of radius 3.5 cm. The total height of the toy is 15.5 cm. Find the volume of the toy.

33. Verify the de Morgan's law using Venn diagram:

$$A-(B\cup C)=(A-B)\cap (A-C).$$

OR

If f(x) = x - 1, g(x) = 2x + 1 and  $h(x) = x^2$ , prove that  $(f \circ g) \circ h = f \circ (g \circ h)$ .

34. Factorise:  $x^3 - 6x^2 + 11x - 6$ .

OR

Simplify:  $\frac{x}{x^2 - 9x + 20} + \frac{x}{x^2 - 8x + 15} - \frac{x}{x^2 - 7x + 12}$ .

35. If  $9x^4 + 12x^3 + 40x^2 + ax + b$  is a perfect square, find the values of a and b.

OR

The perimeter of a rectangle is 36 cm and its area is 80 sq.cm. Find its dimensions.

36. Use graphical method to solve the following:

 $2x + y \ge 4$ ;  $3x + 5y \ge 15$ ;  $x \ge 0$ ;  $y \ge 0$ .

(Graph sheet need not be used).

A project has the following schedule:

| Activity          | 1 - 2 | 2 - 3 | 2 - 4 | 3 – 5 | 4 - 6 | 5 – 6 |
|-------------------|-------|-------|-------|-------|-------|-------|
| Duration in weeks | 6     | 8     | 4     | . 9 . | 2     | 7     |

- i) Construct the network
- ii) Find the critical path and project duration.
- 37. Prove that the opposite angles of a cyclic quadrilateral are supplementary.

OR

Chords AB and CD cut at P outside a circle such that AB = 8, BP = 4 and CD = 8. Find DP.

38. Find the area of the quadrilateral formed by the points (3, 4), (5, -2), (4, -7) and (1, 1).

OR

Find the equation of the straight line joining the point (4, 5) and the point of intersection of the straight lines 5x - 3y = 8 and 2x - 3y = 5.

39. Find the area of a right angled triangle with hypotenuse 10 cm and one of the acute angles, 66° 36′.

OR

Two men are on the opposite sides of a tower. They measure the angles of elevation of the top of the tower as 30° and 45° respectively. If the height of the tower is 150 m, find the distance between them.

40. Find the standard deviation of the following data:

38, 70, 48, 34, 42, 56.

OR

Two persons X and Y appeared in an interview for two vacancies in an office. The chance for X's selection is  $\frac{1}{5}$  and the chance of Y's selection is  $\frac{1}{7}$ . Find the chance that (i) both of them are selected (ii) only one of them is selected (iii) none of them is selected.

### PART - D

(Marks: 20)

- Note: i) This part contains two questions.
  - ii) Answer both the questions choosing either of the alternatives under each question.
  - iii) Each question carries ten marks.

 $2 \times 10 = 20$ 

41. Construct a cyclic quadrilateral ABCD, given AB = 7 cm, BC = 5 cm, AC = 6 cm and BD = 6.5 cm.

OR

Draw a circle with centre O and radius 5 cm. Take a point P outside the circle at a distance of 13 cm from its centre. Draw two tangents to the circle from the point P.

42. Solve graphically of the following equation:

$$2x^2 - x - 6 = 0.$$

OR

Draw the graph of xy = 18, x > 0, y > 0. Use the graph to find y when x = 6 and x when y = 4.