Punjab Technical University Master of Computer Application Examination

MCA $1^{\text {st }}$ Semester MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006

Time: Three hours Maximum: 100 marks
PART A Answer ALL questions. ($8 \times 5=40$ marks)

1. (a) Construct the truth table for Or
(b) Obtain disjunctive normal form of
2. (a) Show that is a valid conclusion from the premises $P \vee Q, Q R, P$ M and M.
(b)Show that $\mathrm{P} v \mathrm{Q}$ follows from P .
3. (a) Discuss the connection between groups and monoids. Or
(b) Prove that the intersection of any two subgroups of a group G is again a subgroup of G.
4. (a) Define a cyclic group. Also prove that every cyclic group G is abelian. Or
(b) Define a field. Give a suitable example.
5. (a) Show that the function f defined by $\mathrm{f}(\mathrm{x})=\mathrm{X} / 2$ when X is even $=\mathrm{X}-2$ when X is odd, primitive recursive.
Or
(b) Show that the set of divisions B of a positive integer n is recursive.
6. (a) Define posets with an example. Let $(\mathrm{L},<=)$ be a poset and a 1, , a 2 EL . If a1 and a 2 have a greatest lower bound (GLB) , then show that this GLB is unique. Or
(b) Let (L,::: be a lattice and a, b, c E L . Then prove that a $? ? a=a$ and $a * a=a$.
7. (a) Explain Normal forms. Or
(b) Find a grammar G such that $L(G)=\{$ an $b n: n>=1\}$.
8. (a) Explain Pumping Lemma. Or
(b) Design finite state automata that accepts precisely those strings over $\{\mathrm{a}, \mathrm{b}\}$ that contains an Odd number of a's.

PART B Answer ALL questions. ($5 \times 12=60$ marks)

9. (a) (i) Explain the difference between direct proof and indirect proof with suitable examples.
(ii) Without constructing a truth table, show that $\mathrm{A} \wedge \mathrm{E}$ is not a valid consequence of A ? B B ? ($\left.\mathrm{C}^{\wedge} \mathrm{D}\right)$) C? (AVE)AVEOr
(b) (i) Derive P (Q R) , Q ($\mathrm{R} \mathrm{S} \mathrm{)} \Rightarrow \mathrm{P}$ (Q S) using rule CP if necessary.
(ii) Using indirect method if needed, prove that $(\mathrm{R} Q), R \mathrm{~V}, \mathrm{~S} Q, \mathrm{P} Q=\mathrm{P}$.
10. (a) (i) Show that every cyclic monoid is commutative.
(ii) Prove that a commutative ring ($\mathrm{R},+$, .) is an integral domain if and only if the Cancellation law $\mathrm{a} . \mathrm{b}=\mathrm{a} . \mathrm{c}$ and $\mathrm{a} \mathrm{b}=>\mathrm{b}=\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \mathrm{E}$ R holds.
Or
(b) State and prove Lagrange's theorem.
11. (a) (i) Let (L,) be a lattice. Then show that for any $a, b, c \mathrm{EL}$, the distributive inequalities.
(ii) Show that in a lattice (L ,), for any
(b) (i) In any Boolean algebra, show that a $b=>a+b c=b(a+c)$
(ii) Show that
12. (a) Simplify the Boolean function?($0,3,4,5,6,7,9,10$). Or
(b) Explain the four classes of grammars with example. What is the relation between them?
13. (a) Let $\mathrm{M}=(\{\mathrm{qO}, \mathrm{q} 1, \mathrm{q} 2\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{d}, \mathrm{q} 0\{\mathrm{q} 2\})$ is a finite automation where d is given by Or
(b) Construct a deterministic finite state automation (FA) equivalent to an NFA with the following transition diagram.
