M.Math. Sample Questions 2005

1. Let $F: \mathbf{R}^n \to \mathbf{R}$ be defined by

$$F(x_1, x_2, ...x_n) = \max\{|x_1|, |x_2|, ... |x_n|\}.$$

Show that F is a uniformly continuous function.

2. Let $f:(0,1) \to \mathbf{R}$ be defined as $f(x) = \frac{1}{n}$ if $x = \frac{m}{n}$ with m, n relatively prime integers and f(x) = 0 if x is irrational.

Let $q: \mathbf{R} \to \mathbf{R}$ be defined as

g(x) = 0 if $x \le 0$ or $x > \frac{1}{2}$ and g(x) = 1 for other x.

Show that the function h(x) = g(f(x)) is not Riemann integrable.

- 3. A map $f: \mathbf{R} \to \mathbf{R}$ is called open if f(A) is open for every open subset A of \mathbf{R} . Show that every continuous open map of \mathbf{R} into itself is monotonic.
- 4. Let (X,d) be a compact metric space. Show that every map $f: X \to X$ satisfying d(f(x), f(y)) = d(x, y) for all $x, y \in X$ is onto.
- 5. Let $\mathbf{T} = \{z \in \mathbf{C} : |z| = 1\}$ and $f : [0,1] \to \mathbf{C}$ be continuous with f(0) = 0, f(1) = 2. Show that there exists at least one t_0 in [0,1] such that $f(t_0)$ is in \mathbf{T} .
- 6. Let f be a continuous function on [0,1]. Evaluate

$$\lim_{n \to \infty} \int_0^1 x^n f(x) dx$$

- 7. Find the most general curve whose normal at each point passes though (0,0). Find the particular curve through (2,3).
- 8. Suppose f is a continuous function on \mathbf{R} which is periodic with period 1, that is, f(x+1) = f(x) for all x. Show that
 - (i) the function f is bounded above and below,
 - (ii) it achieves both its maximum and minimum and
 - (iii) that it is uniformly continuous.

9. Let $S = \{(x_1, x_2, ... x_n) \in \mathbf{R}^n : \sum |x_i|^2 = 1\}$. Let

$$A = \{(y_1, y_2, ...y_n) \in \mathbf{R}^n : \sum_{i=1}^{n} \frac{y_i}{i} = 0\}.$$

Show that the set $S+A=\{x+y:x\in S\ ,\ y\in A\}$ is a closed subset of ${\bf R}^n.$

- 10. Let $A = (a_{ij})$ be an $n \times n$ matrix such that $a_{ij} = 0$ whenever $i \geq j$. Prove that A^n is the zero matrix.
- 11. Determine the integers n for which Z_n , the set of integers modulo n, contains elements x, y so that x + y = 2, 2x 3y = 3.
- 12. Let a_1, b_1 be arbitrary positive real numbers. Define

$$a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \sqrt{a_n b_n}$$

for all $n \geq 1$. Show that a_n and b_n converge to a common limit.

- 13. Show that the only field automorphism of \mathbf{Q} is the identity. Using this prove that the only field automorphism of \mathbf{R} is the identity.
- 14. Consider a circle which is tangent to the y-axis at 0. Show that the slope at any point (x, y) satisfies $\frac{dy}{dx} = \frac{y^2 x^2}{2xy}$.
- 15. Consider an $n \times n$ matrix $A = (a_{ij})$ with $a_{12} = 1$, $a_{ij} = 0 \,\forall (i, j) \neq (1, 2)$. Prove that there is no invertible matrix P such that PAP^{-1} is a diagonal matrix.
- 16. Let G be a nonabelian group of order 39. How many subgroups of order 3 does it have?
- 17. Let $n \in \mathbb{N}$, let p be a prime number and let \mathbb{Z}_{p^n} denote the ring of integers modulo p^n under addition and multiplication modulo p^n . Let $f(x) = \sum_{i=1}^r a_i x^i$ and $g(x) = \sum_{i=1}^s b_i x^i$ be polynomials with coefficients from the ring \mathbb{Z}_{p^n} which satisfy $f(x) \cdot g(x) = 0$. Prove that $a_i b_j = 0 \ \forall i, j$.
- 18. Show that the fields $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{3})$ are isomorphic as \mathbf{Q} -vector spaces but not as fields.
- 19. Prove that $X^4 10X^2 + 1$ is reducible modulo p for every prime p.

20. Suppose $a_n \geq 0$ and that $\sum a_n$ is convergent. Show that $\sum 1/(n^2a_n)$ is divergent.