Code: D-01 / DC-01

Time: 3 Hours

Subject: MATHEMATICS - I
December 2005

Max. Marks: 100
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following:
(2x10)
a. The equation of the straight line which makes equal intercepts on the axes and passes through the point $(1,2)$ is
(A) $x+y=3$
(B) $x+2 y=5$
(C) $x-y=1$
(D) $2 x+y=4$
b. Area of the triangle whose vertices are $(a, b)(a, a+b),(-a,-a+b)$ is
(A) $a^{2} b^{2}$
(B) $\mathrm{a}^{2}+\mathrm{b}^{2}$
(C) a^{2}
(D) b^{2}
c. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$ is
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) Zero
d. The point on the curve $y^{2}=4 x$ at which the tangent to the curve is parallel to $y=x$ is
(A) $(0,0)$
(B) $(2,2 \sqrt{2)}$
(C) $(4,4)$
(D) $(1,2)$
e.
$\int \frac{\operatorname{Sin}^{3} x-\operatorname{Cos}^{3} x}{\operatorname{Sin}^{2} x \operatorname{Cos}^{2} x} d x$ is equal to
(A) $\tan x-\cot x$
(B) $\tan x+\cot x$
(C) $\sec x+\operatorname{cosec} x$
(D) $\sec x-\operatorname{cosec} x$
f. $\int_{0}^{\frac{\pi}{2}} \operatorname{Sin}^{3} x d x$ is equal to
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{4}$
g. Solution of differential equation $\frac{d y}{d x}=e^{x-y}$ is
(A) $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=$ const
(B) $\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{y}}=$ const
(C) $\mathrm{e}^{\mathrm{x}} \cdot \mathrm{e}^{\mathrm{y}}=$ const
(D) $\mathrm{e}^{\mathrm{x}} / \mathrm{e}^{\mathrm{y}}=$ const
h. Period of $\operatorname{Sin}(2 x+3)$ is
(A) 2π
(B) $\frac{3 \pi}{2}$
(C) π
(D) $\frac{\pi}{2}$
i. The value of $\operatorname{Sin} 105^{\circ}+\operatorname{Cos} 105^{\circ}$ is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{2}$
(D) $\frac{1}{\sqrt{2}}$
j. If p th, $(2 p)^{\text {th }}$ and $(3 p)^{\text {th }}$ terms of a G.P. are x, y, z respectively, then x, y, z are in
(A) A.P.
(B) H.P.
(C) G.P.
(D) None of these

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Find the term independent of x in the expansion of $\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{12}$.
b. If the $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of an A.P. are $\mathrm{x}, \mathrm{y}, \mathrm{z}$ respectively, show that $\mathrm{x}(\mathrm{q}-$ $r)+y(r-p)+z(p-q)=0$. (8)
Q. 3 a. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, show that

$$
\begin{equation*}
\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=\cot \frac{\mathrm{A}}{2} \cot \frac{\mathrm{~B}}{2} \cot \frac{\mathrm{C}}{2} \tag{8}
\end{equation*}
$$

b. In any triangle ABC , show that

$$
\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}
$$

(8)
Q. 4 a. Find the equation of a straight line when p is the length of perpendicular on it from the origin and the inclination of this perpendicular to the $\mathrm{x}-$ axis is α (8)
b. Find the equation of the straight line which passes through the intersection of the straight lines $2 x-3 y+4=0$ and $3 x+4 y+5=0$ and is perpendicular to the straight line $6 x-7 y+8=0$.
Q. 5 a. Show that $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle. Find its centre and radius.
b. Find the vertex, focus, latus rectum and directrix of the parabola. $\quad x^{2}=4 x-$ y.
(10)
$\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$, by using the fact that $t \rightarrow 0(1+t)^{1 / t}=e$
b. Differentiate $\tan ^{-1} \sqrt{\frac{1-\operatorname{Cos} x}{1+\operatorname{Cos} x}}$ with respect to x.
Q. 7 a. Find the points at which the function
$y=3 \operatorname{Sin}^{2} x+4 \operatorname{Cos}^{2} x$
has maximum and minimum values in the interval $\left[0, \frac{\pi}{2}\right]$
(8)
b. Evaluate $\int \frac{d x}{a \cos x+b \sin x}$, where a, b are not both zero.
Q. 8 a. Find the area common to the circles $x^{2}+y^{2}-2 a x=0$ and $x^{2}+y^{2}-2 a y=0$.
b. Evaluate $\int_{0}^{1} \frac{\mathrm{x}^{3}}{\left(1+\mathrm{x}^{8}\right)} \mathrm{dx}$
Q. 9 Solve following the differential equations
(i) $y d x-x d y=\sqrt{\left(x^{2}+y^{2}\right)} d x$.
(ii) $\operatorname{Cos}^{2} x \frac{d y}{d x}+y=\tan x$.

