Code: DE23/DC23 Time: 3 Hours

DECEMBER 2010

Subject: MATHEMATICS - II Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

$$(2 \times 10)$$

a. If $x + iy = \sqrt{2} + 3i$, then $x^2 + y$ is (A) 7 (B) 5 (C) 13 (D) $\sqrt{2} + 3i$

b. If
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
, then $\cos x$ is equal to,
(A) $\frac{e^{ix} + e^{-ix}}{2}$ (B) $\frac{e^{-ix} + e^{x}}{2}$

(C)
$$\frac{e^{x} - e^{-x}}{2}$$
 (D) $\frac{e^{x} - e^{-ix}}{2}$

c. If three vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar then,

(A)	$(\vec{a} \times \vec{b}) \times \vec{c} = 0$	$(\mathbf{B}) \ \left(\vec{\mathbf{a}} \times \vec{\mathbf{b}}\right) \cdot \vec{\mathbf{c}} = 0$
(C)	$(\vec{a} \times \vec{b}) \cdot \vec{c} = 1$	(D) $(\vec{a} \times \vec{b}) \cdot \vec{c} = -1$

d. If $|\vec{A} + \vec{B}| = 30$, $|\vec{A} - \vec{B}| = 20$ and $|\vec{B}| = 23$, then $|\vec{A}|$ is equal to (A) 12 (B) 13 (C) 11 (D) 14 e. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, then A^{-1} is (A) $\frac{1}{2} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ (B) $\frac{1}{3} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$ (C) $\frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ (D) $\frac{1}{2} \begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}$

1

f. For what value of x is the matrix

$\int 3 - x$	2	2]			
1	4 – x	1	singular?		
$\lfloor -2$	-4	-1-x			
(A) 1,2	2,3			(B)	1,-2,-3
(C) 1,2	2,5			(D)	1,-2,-5

		-6	-2	2	
g.	The characteristic roots of the matrix	-2	3	-1	is
		2	-1	3	
	(A) 2,3,6 (I	(B) 1,2,3			
	(C) 2,2,8 (I	(D) 1,2,6			

h. The period of $|\cos x|$ is

(A)
$$\pi/2$$
 (B) π
(C) $3\pi/2$ (D) 2π

i. The inverse Laplace transform of
$$\frac{1}{S(S+2)}$$
 is
(A) $-\frac{1}{2}[e^{2t}-1]$ (B) $-\frac{1}{2}[e^{-2t}-1]$
(C) $-\frac{1}{2}[e^{-2t}-2]$ (D) $-\frac{1}{2}[e^{-2t}+2]$

j. The solution of differential equation $\frac{d^2y}{dx^2} + 9y = e^x - \cos 2x \text{ is}$ (A) $y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{10}e^x - \frac{1}{5}\cos 2x$ (B) $y = c_1 \cos 3x - c_2 \sin 3x - \frac{1}{10}e^{-x} + \frac{1}{5}\cos 2x$ (C) $y = c_1 \cos 3x + c_2 \sin 3x + 10e^x - 5\cos 2x$ (D) $y = c_1 \cos 3x - c_2 \sin 3x + 5e^x - 5\cos 2x$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Show that the roots of the equation
$$x^{10} + 11x^5 - 1 = 0$$
 are $\left(\frac{\pm\sqrt{5}-1}{2}\right)\left(\cos\frac{2n\pi}{5} + i\sin\frac{2n\pi}{5}\right)$, where n =0,1,2,3,4. (8)

b. If
$$\sin(\alpha + i\beta) = x + iy$$
, then show that, $\frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$. (8)

- Q.3 a. The centre of a regular hexagon is at the origin and one vertex is given by $\sqrt{3} + i$ on the Argand plane. Find the complex number represented by the other vertices. (8)
 - b. Show that the line joining one vertex of parallelogram to the mid-point of an opposite side trisects the diagonal and is trisected there at. (8)
- Q.4 a. Forces of magnitude 5,3,1 Kg acting on the directions 6i+2j+3k, 3i-2j+6k, 2i-3j-6k respectively act on a particle which is displaced from the point (2,-1,-3) to (5,-1,1). Find the work done by the forces, the unit of length being metre.
 - b. Find an unit vector parallel to the sum of the vectors $\vec{a} = 2i + 4j 5k$ and $\vec{b} = i + 2j + 3k$. (8)

Q.5 a. Evaluate
$$\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-7 & 3x-64 \end{vmatrix} = 0.$$
 (8)

- b. Solve the equation using Cramer's Rule. 3x - 4y - z = 2 6x + 6y + 3z = 79x - 8y - 5z = 0(8)
- Q.6 a. Find the values of λ for which the following system of equation is consistent and has nontrivial solution. Solve the equation for all such values of λ

$$(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$$

(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0
2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0 (8)

b. Find the characteristic equation of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ and hence find the inverse of the matrix A. (8)

Q.7 a. Find the Laplace transform of $e^{-3t}(\cos 4t + 3\sin 4t)$. (8)

b. Find the Inverse Laplace Transform of
$$\frac{3s-2}{s^2-4s+20}$$
. (8)

DE23/DC23 / DEC. - 2010 3 DiplETE - ET/CS (OLD SCHEME)

Q.8 a. Use Laplace transform technique to solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$, given that x(0) = 1 and $x(\frac{\pi}{2}) = -1$. (8)

b. Solve the differential equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x \cdot e^x \cdot \sin x$$
. (8)

- Q.9 a. Show that any real valued function can be uniquely expressed as the sum of an even function and an odd function. (8)
 - b. Find the Fourier series for the function f(x) = x in the interval $[-\pi, \pi]$. (8)