DipIETE - ET / CS (OLD SCHEME)

Code: DE23/DC23
Time: 3 Hours

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $x+i y=\sqrt{2}+3 i$, then $x^{2}+y$ is
(A) 7
(B) 5
(C) 13
(D) $\sqrt{2}+3$
b. If $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$, then $\cos x$ is equal to,
(A) $\frac{\mathrm{e}^{i x}+e^{-i x}}{2}$
(B) $\frac{\mathrm{e}^{-i \mathrm{x}}+\mathrm{e}^{\mathrm{x}}}{2}$
(C) $\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}$
(D) $\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{ix}}}{2}$
c. If three vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar then,
(A) $(\vec{a} \times \vec{b}) \times \vec{c}=0$
(B) $(\vec{a} \times \vec{b}) \cdot \vec{c}=0$
(C) $(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}=1$
(D) $(\vec{a} \times \vec{b}) \cdot \vec{c}=-1$
d. If $|\vec{A}+\vec{B}|=30,|\vec{A}-\vec{B}|=20$ and $|\vec{B}|=23$, then $|\vec{A}|$ is equal to
(A) 12
(B) 13
(C) 11
(D) 14
e. If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, then A^{-1} is
(A) $\frac{1}{2}\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]$
(B) $\frac{1}{3}\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$
(C) $\frac{1}{3}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
(D) $\frac{1}{2}\left[\begin{array}{cc}-2 & 1 \\ 1 & 2\end{array}\right]$
f. For what value of x is the matrix
$\left[\begin{array}{ccc}3-x & 2 & 2 \\ 1 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ singular?
(A) $1,2,3$
(B) $1,-2,-3$
(C) 1,2,5
(D) $1,-2,-5$
g. The characteristic roots of the matrix $\left[\begin{array}{ccc}-6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is
(A) 2,3,6
(B) $1,2,3$
(C) $2,2,8$
(D) $1,2,6$
h. The period of $|\cos \mathrm{x}|$ is
(A) $\pi / 2$
(B) π
(C) $3 \pi / 2$
(D) 2π
i. The inverse Laplace transform of $\frac{1}{\mathrm{~S}(\mathrm{~S}+2)}$ is
(A) $-\frac{1}{2}\left[\mathrm{e}^{2 \mathrm{t}}-1\right]$
(B) $-\frac{1}{2}\left[e^{-2 t}-1\right]$
(C) $-\frac{1}{2}\left[e^{-2 t}-2\right]$
(D) $-\frac{1}{2}\left[\mathrm{e}^{-2 \mathrm{t}}+2\right]$
j. The solution of differential equation $\frac{d^{2} y}{d x^{2}}+9 y=e^{x}-\cos 2 x$ is
(A) $y=c_{1} \cos 3 x+c_{2} \sin 3 x+\frac{1}{10} e^{x}-\frac{1}{5} \cos 2 x$
(B) $\mathrm{y}=\mathrm{c}_{1} \cos 3 \mathrm{x}-\mathrm{c}_{2} \sin 3 \mathrm{x}-\frac{1}{10} \mathrm{e}^{-\mathrm{x}}+\frac{1}{5} \cos 2 \mathrm{x}$
(C) $y=c_{1} \cos 3 x+c_{2} \sin 3 x+10 e^{x}-5 \cos 2 x$
(D) $y=c_{1} \cos 3 x-c_{2} \sin 3 x+5 e^{x}-5 \cos 2 x$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Show that the roots of the equation $x^{10}+11 x^{5}-1=0$ are $\left(\frac{ \pm \sqrt{5}-1}{2}\right)\left(\cos \frac{2 \mathrm{n} \pi}{5}+\mathrm{i} \sin \frac{2 \mathrm{n} \pi}{5}\right)$, where $\mathrm{n}=0,1,2,3,4$.
b. If $\sin (\alpha+i \beta)=x+i y$, then show that, $\frac{x^{2}}{\cosh ^{2} \beta}+\frac{y^{2}}{\sinh ^{2} \beta}=1$.
Q. 3 a. The centre of a regular hexagon is at the origin and one vertex is given by $\sqrt{3}+i$ on the Argand plane. Find the complex number represented by the other vertices.
b. Show that the line joining one vertex of parallelogram to the mid-point of an opposite side trisects the diagonal and is trisected there at.
Q. 4 a. Forces of magnitude $5,3,1 \mathrm{Kg}$ acting on the directions $6 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$, $3 \mathrm{i}-2 \mathrm{j}+6 \mathrm{k}, 2 \mathrm{i}-3 \mathrm{j}-6 \mathrm{k}$ respectively act on a particle which is displaced from the point $(2,-1,-3)$ to $(5,-1,1)$. Find the work done by the forces, the unit of length being metre.
b. Find an unit vector parallel to the sum of the vectors $\vec{a}=2 i+4 j-5 k$ and

$$
\begin{equation*}
\vec{b}=i+2 j+3 k . \tag{8}
\end{equation*}
$$

Q. $5 \quad$ a. Evaluate $\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-7 & 3 x-64\end{array}\right|=0$.
b. Solve the equation using Cramer's Rule.

$$
\begin{gather*}
3 x-4 y-z=2 \\
6 x+6 y+3 z=7 \tag{8}\\
9 x-8 y-5 z=0
\end{gather*}
$$

Q. 6 a. Find the values of λ for which the following system of equation is consistent and has nontrivial solution. Solve the equation for all such values of λ

$$
\begin{gather*}
(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0 \\
(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0 \tag{8}\\
2 x+(3 \lambda+1) y+3(\lambda-1) z=0
\end{gather*}
$$

b. Find the characteristic equation of the matrix $\mathrm{A}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ and hence find the inverse of the matrix A .
Q. 7 a. Find the Laplace transform of $\mathrm{e}^{-3 \mathrm{t}}(\cos 4 \mathrm{t}+3 \sin 4 \mathrm{t})$.
b. Find the Inverse Laplace Transform of $\frac{3 s-2}{s^{2}-4 s+20}$.
Q. 8 a. Use Laplace transform technique to solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, given that $x(0)=1$ and $x(\pi / 2)=-1$.
b. Solve the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \cdot e^{x} \cdot \sin x$.
Q. 9 a. Show that any real valued function can be uniquely expressed as the sum of an even function and an odd function.
b. Find the Fourier series for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in the interval $[-\pi, \pi]$.

