M.Sc. DEGREE II SEMESTER EXAMINATION IN ENVIRONMENTAL TECHNOLOGY MAY 2005

ENV 2202 ENVIRONMENTAL ENGINEERING

Time: 3 Hours Maximum Marks: 50

PART-A

(Answer <u>any five</u> questions)
(All questions carry <u>equal</u> marks)

 $(5 \times 2 = 10)$

- I. 1. State the permissible limits for 'nitrate' and 'fluoride' in potable water.

 Mention the ill-effects when they are not in the permissible limits.
 - 2. What is meant by 'disinfection' in treating public water supply?
 - 3. Define 'sludge volume index'.
 - 4. Differentiate between 'Adiabatic lapse rate' and 'Environmental lapse rate'
 - 5. Mention the major sources of 'SO_x' and 'NO_x'.
 - 6. What do you understand by 'Threshold of hearing'?

PART-B

(Answer <u>any five</u> questions)
(All questions carry <u>equal</u> marks)

 $(5 \times 3 = 15)$

- II. What is meant by Hardness of water? How it is determined in the laboratory? Explain.
- III. "In sedimentation tanks, area and the overflow rate rather than the detention period should govern the design." Comment on the statement.
- IV. What do you understand by the efficiency of a trickling filter? How do you determine the efficiency, using (i) NRC formulae and (ii) Velz equation?
- V. Explain the working of 'Electrostatic precipitator' with the help of a neat sketch.

(Turn Over)

- VI. What mathematical formulae are used to describe the atmospheric diffusion process? Describe Gaussian equation.
- VII. Discuss briefly the disposal of refuse by incineration.

PART-C

(Answer <u>any five</u> questions)
(All questions carry <u>equal</u> marks)

 $(5 \times 5 = 25)$

- VIII. Explain the importance of bacteriological tests in determining the quality of drinking water. Also explain the *E.coli* test.
- IX. Design a set of rapid sand gravity filters for treating water required for a population of 50,000 the rate of supply being 180 litres/day/person. The filters are rated to work 5000 litres/hour/m². Assume any other data required.
- X. Determine the effective height of a stack, with the following data:-
 - (a) Physical height is 180m with 0.90 m inside decimeter.
 - (b) Wind velocity is 2.8 m/sec.
 - (c) Air temperature is 27°C.
 - (d) Barometric pressure is 1000 millibars.
 - (e) Stack gas velocity is 11.15 m/sec.
 - (f) Stack gas temperature is 170°C.
- XI. With the help of a neat sketch explain the working of a sludge digestion tank and the sludge digestion process.
- XII. Explain the absorption and adsorption processes for the control of gaseous pollutants..
- XIII. What are sources of industrial noise pollution? Explain how it is controlled.