Roll No.

Paper ID [EC204]

(Please fill this Paper ID in OMR Sheet)
 B.Tech. (Sem. $-4^{\text {th }}$)
 DIGITAL ELECTRONICS (EC-204)

Time : 03 Hours
Maximum Marks: 60
Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section - C.

Section - A

Q1)

(10 $\times 2=20$)
a) Convert decimal 225.225 to binary, octal and hexadecimal bases.
b) Give the truth-table for each flip-flop type: (a) J-K; (b) D; and (c) T.
c). Find two's complement of the numbers (i) 01001110 ; (ii) 01100100 .
d) List applications of a direct coupled amplifier.
e) Explain why there may be a race condition in a shift register?
f) In a function of six variables the total maximum number of terms which the expression can have will be \qquad .
g) Comment on the parameters which serve to describe the quality of performance of a D/A converter.
h) What is a ripple counter?
i) Differentiate between static and dynamic shift registers.
j) Determine the resolution of the output from a DAC that has a 12 -bit input.

Section - B

$$
(4 \times 5=20)
$$

Q2) A four-variable function is given as $f(A, B, C, D)=\Pi M(0,3,4,5,6,7,11,13,14,15)$. Use a K-map to minimize the function.
Q3) Define a demultiplexer. Show how to convert a decoder into a demultiplexer. Indicate how to add a strobe to this system.

Q4) Draw the logic symbols for T and RST flip-flops. Explain the function of each type of flip-flop.

Q5) Give an order of magnitude which is applicable to various logic families for (a) fan-out; (b) power dissipation per gate; (c) propagation delay per gate; (d) clock rate.

Q6) Represent the decimal numbers (a) 27 , (b) 396 and (c) 4096 in binary form in (i) ASCII code, (ii) Gray code, and (iii) Excess 3 code.

Section - C

$$
(2 \times 10=20)
$$

Q7) Draw and explain the basic block diagram of (i) voltage of frequency conversion and (ii) voltage of time conversion
Q8) (a) Draw the basic block diagram of a voltage of frequency conversion. Sketch the system waveforms and explain its operation.
(b) An A / D converter has the following characteristics: resolution $=12$ bits; relative accuracy $=0.03$ per cent full scale; and full scale output $=+5 \mathrm{~V}$.
(i) What is the quantization error in volts?
(ii) What is the possible error in volts?

Q9) Write short notes on the following:
(a) Counter design with state equation and state diagrams.
(b) Classification and characteristics of memories.

