Electronics & Telecommunication Engineering

1. Consider the following:

1. Oscillator	2.	Emitter follower
3. Cascaded amplifier	4.	Power amplifier
Which of these use feedback amplifiers?		
(A) 1,2	(B)	1, 3

- (C) 2, 4 (D) 3, 4
- 2. Why npn-transistors are preferred over pnp transistors?
 - (A) Leakage current in npn transistors is less than pnp transistors
 - (B) Mobility of majority carrier in npn transistors is greater than the mobility of majority carrier in pnp transistors
 - (C) Bias voltage required in npn is less than in pnp transistors
 - (D) Bias voltage required in npn is greater than in pnp transistors

Consider the following statements:
 To draw a.c. equivalent circuit of a transistor, all:
 d.c. sources are shorted
 a.c. sources are shorted

- 2. a.c. sources are shorted
- 3. d.c. sources are opened
- a.c. sources are connected to d.c. sources

Which of the above statements is / are correct?

(A) 2, 4 (B) 1, 2

(D) 3, 4

4. Which one of the following statements is not correct with regard to power amplifiers?

(C) 1 only

- (A) The collector current is large
- (B) They are used as the front end of multi-stage amplifiers
- (C) They are used near the end of the multi-stage amplifiers
- (D) They have a high power rating (>1/2W)
- 5. Consider the following statements regarding the class-B power amplifiers (complementary symmetry type):
 - 1. The efficiency of the amplifier is higher than that of class-A amplifier
 - 2. The power output is low
 - 3. Cross over distortion is present
 - 4. The standby power dissipation is absent

Which of the above statements are correct?

- (A) 1, 2, 3 (B) 1, 2, 4
 - 2, 4 (C) 1, 3, 4

(D) 2, 3, 4

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

EC - Objective Paper-II	IES-2009
--------------------------------	----------

6.	Consider the follo	wing:		
	1. Distortion	2. Gain	3. Bias stabi	lization
	4. Sensitivity	5. Frequency re	esponse	
		roperties of the pow good power amplifier		nould concentrate upon
	(A) 1, 2, 3		(B) 1, 3, 5	
	(C) 2, 3, 4		(D) 4,5	
7.	Consider the follo	wing:		
	1. Coupling capa	acitor	2. Emitter by	-pass capacitor
	3. Emitter to bas	se diffusion capacitar	ice of the BJT	
	, ,	ance of the circuit		
	frequency of the a			ontrol the lower cut-off
	(A) 1, 2	(B) 2, 3	(C) 3, 4	(D)1,4
8.	Which and of the	following is a regulat	ad nowar gunnly?	
0.	(A) IC 555	following is a regulate (B) IC 844	(C) IC 3080	(D)IC 723
	(A) IC 333	(B) IC 844	(C) IC 3080	(D)1C 725
9.		wing statements rega ative feedback reduc	-	ion
	3. Non-inverting (4. Inverting (curre	pative feedback reduc (current and voltage) e <mark>nt and vol</mark> ta <mark>ge</mark>) f <mark>ee</mark> d ve statements is / are	feedback increases b <mark>a</mark> ck <mark>d</mark> ecr <mark>e</mark> ase <mark>s</mark> inpu	the input impedance
	3. Non-inverting (4. Inverting (curre	(current and voltage) e <mark>nt</mark> a <mark>nd</mark> v <mark>ol</mark> tage) f <mark>ee</mark> d	feedback increases b <mark>a</mark> ck <mark>d</mark> ecr <mark>e</mark> ase <mark>s</mark> inpu	the input impedance
10.	3. Non-inverting (4. Inverting (curre Which of the abov (A) 1 only Consider the follo	current and voltage) ent and voltage) feed ve statements is / are (B) 2, 3 wing statements: of an emitter-bias are value of R _B value of R _E	feedback increases back decreases inpute correct? (C) 2, 4 plifier circuit is imp 2. Increasing	the input impedance at impedance (D) 1, 2, 3, 4
10.	 3. Non-inverting (4. Inverting (curred) Which of the above (A) 1 only Consider the follow The bias stability of 1. Decreasing the 3. Decreasing the 5. Increasing the 	current and voltage) ent and voltage) feed ve statements is / are (B) 2, 3 wing statements: of an emitter-bias are value of R _B value of R _E	feedback increases back decreases inpute correct? (C) 2, 4 plifier circuit is imp 2. Increasing 5 4. Increasing 5	the input impedance at impedance (D) 1, 2, 3, 4 roved by: the value of R _E
10.	 3. Non-inverting (4. Inverting (curred) Which of the above (A) 1 only Consider the follow The bias stability of 1. Decreasing the 3. Decreasing the 5. Increasing the 	current and voltage) ent and voltage) feed re statements is / are (B) 2, 3 wing statements: of an emitter-bias and value of R _B value of R _E value of R _C	feedback increases back decreases inpute correct? (C) 2, 4 plifier circuit is imp 2. Increasing 5 4. Increasing 5	the input impedance at impedance (D) 1, 2, 3, 4 roved by: the value of R _E
10.	 3. Non-inverting (4. Inverting (curred) Which of the above (A) 1 only Consider the follow The bias stability of 1. Decreasing the 3. Decreasing the 5. Increasing the Which of the above (A) 1, 2 Which of the follow 	current and voltage) ent and voltage) feed re statements is / are (B) 2, 3 wing statements: of an emitter-bias are value of R _B value of R _E value of R _C re statements are cor (B) 2, 3	feedback increases back decreases inpute correct? (C) 2, 4 plifier circuit is imp 2. Increasing 4. Increasing rect? (C) 3, 4 or a CE transistor	the input impedance (D) 1, 2, 3, 4 (D) 1, 2, 3, 4 roved by: the value of R _E the value of R _B (D) 4, 5 amplifier if the emitter
	 3. Non-inverting (4. Inverting (curred) Which of the above (A) 1 only Consider the follow The bias stability of 1. Decreasing the 3. Decreasing the 5. Increasing the Which of the above (A) 1, 2 Which of the follow 	current and voltage) ent and voltage) feed re statements is / are (B) 2, 3 wing statements: of an emitter-bias are value of R _B value of R _C re statements are cor (B) 2, 3 owing will be true fe	feedback increases back decreases inpute correct? (C) 2, 4 plifier circuit is imp 2. Increasing 1 4. Increasing 1 rrect? (C) 3, 4	the input impedance (D) 1, 2, 3, 4 (D) 1, 2, 3, 4 roved by: the value of R _E the value of R _B (D) 4, 5 amplifier if the emitter
	 3. Non-inverting (4. Inverting (curred) Which of the above (A) 1 only Consider the follow The bias stability of 1. Decreasing the 3. Decreasing the 5. Increasing the Which of the above (A) 1, 2 Which of the follow Which of the follow (A) 1, 2 	current and voltage) ent and voltage) feed re statements is / are (B) 2, 3 wing statements: of an emitter-bias are value of R _B value of R _E value of R _C re statements are cor (B) 2, 3 owing will be true fe nade equal to zero?	feedback increases back decreases inpute correct? (C) 2, 4 plifier circuit is imp 2. Increasing 4. Increasing rect? (C) 3, 4 or a CE transistor	the input impedance (D) 1, 2, 3, 4 (D) 1, 2, 3, 4 roved by: the value of R _E the value of R _B (D) 4, 5 amplifier if the emitter will increase
	 3. Non-inverting (4. Inverting (curred) Which of the above (A) 1 only Consider the follow The bias stability of 1. Decreasing the 3. Decreasing the 3. Decreasing the 5. Increasing the Which of the above (A) 1, 2 Which of the follow (A) 1, 2 Which of the follow 1. Its gain will incomendation of the gain will decomendation of the gain will decomendation of the gain will decomendation of the gain will decomendation. 	current and voltage) ent and voltage) feed re statements is / are (B) 2, 3 wing statements: of an emitter-bias are value of R _B value of R _E value of R _C re statements are cor (B) 2, 3 owing will be true fe nade equal to zero?	feedback increases back decreases inpute correct? (C) 2, 4 (C) 2, 4 (C) 2, 4 (C) 2, 4 (C) 2, 4 (C) 3,	the input impedance (D) 1, 2, 3, 4 (D) 1, 2, 3, 4 roved by: the value of R _E the value of R _B (D) 4, 5 amplifier if the emitter will increase

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GATEFORUM Engineering Success EC- Objective Paper-II **IES-2009**

12.	Which one of the following circuits is us square wave?	sed for converting a	a sine wave into a		
	(A) Astable multivibrator	(B) Monostable m	ultivibrator		
	(C) Bistable multivibrator	(D) Schmitt trigge			
			-		
13.	Which of the transistor models is most place of the transistor models is most place of the transition of t		lysis of a transistor		
	(A) h-parameter model	(B) y-parameter r	nodel		
	(C) s-parameter model	(D) hybrid - π- m	odel		
14.	Which of the following describe the cor circuit? 1. It is a voltage series feedback circuit	rect properties of a	an emitter follower		
	2. It is a current series feedback circuit				
	3. Its voltage gain is less than unity				
	4. Its output impedance is very low				
	Select the correct answer using the codes	given below:			
	(A) 1, 3, 4 (B) 2, 3, 4	(C) 2, 3	(D)2,4		
15.	Which one of the following type of near resistance and decreases the output resist	-			
	(A) Current series feedback	(B) Voltage series	feedback		
	(C) Current shunt feedback	(D) Voltage shunt	feedback		
1 <mark>6</mark> .	Which one of the following oscillators is range audio-frequency sine waves?	well suited for the	generation of wide		
	(A) RC phase shift oscillator	(B) Wien bridge o	scillator		
	(C) Col-pitts oscillator	(D) Hartley oscilla	tor		
17.	Consider the following statements about a	good power supply:			
	1. The a.c. ripple should be high				
	2. S_v , (Voltage Stability factor) should be low				
	3. S_{τ} , (Temperature stability factor) should be low				
	Which of the above statements are correct	?			
	(A) 1, 2, 3 (B) 2	(C) 3	(D)2,3		
18.	Which of the following are non-linear appli	cations of on-amp?			
10.	1. Current-to-voltage converter	2. Comparator			
	3. Peak detector	4. Limiter			
	Select the correct answer using the code g				
	(A) 1, 2, 3 (B) 2, 3, 4	(C) 1, 3, 4	(D)1, 2, 4		

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

19.	Consider a 565 PLL with $R_{\tau} = 10k\Omega$ and $C_{\tau} = 0.01\mu$ F. What is the output frequency of the VCO? (A) 10kHz (B) 5kHz (C) 2.5kHz (D)1.25kHz
	(A) $10kHZ$ (B) $5kHZ$ (C) $2.5kHZ$ (D) $1.25kHZ$
20.	Which of the following does not show non-linear V-I characteristics?(A) Schottky diode(B) Tunnel diode(C) Thermister, at a fixed temperature(D) p-n junction diode
21.	Which of the following conditions must be satisfied for a transistor to remain under saturation?1. Its collector to base junction should be under forward bias2. Its collector to base junction should be under reverse bias3. Its emitter to base junction should be under reverse bias4. Its emitter to base junction should be under forward bias5. Select the correct answer using the code given below:(A) 1, 2(B) 1, 3(C) 2, 3(D) 1, 4
22.	Which of the following Boolean algebra rules is correct?
23.	 (A) A · A = 1 (B) A + AB = A + B (C) A + AB = A + B (D) A (A + B) = B What are the ultimate purposes of minimizing logic expressions? To get a small size expression To reduce the number of variables in the given expression To implement the function of the logic expression with least hardware To reduce the expression for making it feasible for hardware implementation Select the correct answer from the codes given below:
	(A) 1 (B) 2, 3 (C) 3 (D) 3, 4
24.	 Which of the following factors are responsible to design IC logic gates to operate at a fixed supply voltage of 5 volts? 1. Low heating of IC logic gates 2. Compatibility with other logic gates 3. Satisfactory and safe operation 4. Standardization from IC manufacturing point of view Select the correct answer from the codes given below: (A) 1 only (B) 2 only (C) 2, 3 (D) 3, 4
	(A) I Only (B) 2 Only (C) 2, 5 (D) 5, 4
25.	 Which of the following statements is not correct? (A) Propagation delay is the time required for a gate to change its state (B) Noise immunity is the amount of noise which can be applied to the input of a gate without causing the gate to change state (C) Fan-in of a gate is always equal to fan-out of the same gate

(D) Operating speed is the maximum frequency at which digital data can be applied to a gate

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

G	ATEFORUM ngineering Success EC- Objective Paper-II IES-2009	www.gateforum.com			
26.	Which junction has least junction capacitance?(A) Alloy(B) Grown(C) Dir	ffused (D) Point contact			
27.	Which of the following are universal gates?1. NAND2. NOR3. XCSelect the correct answer from the codes given bel(A) 1, 2(B) 1, 3(C) 2,	ow:			
28.	 28. Which of the following output configurations are available in a TTL gate? 1. Open collector output 2. Totem pole output 3. Tristate output Select the correct answer from the codes given below: (A) 1 only (B) 1, 2 (C) 2, 3 (D) 1, 2, 3 				
29.	Which one of the following logic families can be o from 3V to 15V? (A) TTL (B) ECL (C) PM				
30.		Il subtractor flip flop ow:			
31.		Y. What are the connections			
32.		ode conversions? line to 8 line line to 16 line decoder			
33.	Match List I (applicable of circuit) with List II (circuants answer using the code given below the lists:	it name) and select the correct			

	List I		List II
Ρ	Divider	1	Astable multivibrator
Q	Clips input voltage at two predetermined levels	2	Schmitt trigger
R	Square wave generator	3	Bistable multivibrator
S	Narrow current pulse generator	4	Blocking oscillator

[©] All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

EC- Objective Paper-II **IES-2009**

(D)2,3

(A) P-4, Q-2, R-1, S-3	(B) P-3, Q-2, R-1, S-4
(C) P-4, Q-1, R-2, S-3	(D) P-3, Q-1, R-2, S-4

34. Consider the following statements:

For a master-slave JK flip-flop,

- 1. The toggle frequency is the maximum clock frequency at which the flip-flop will toggle reliably.
- 2. The data input must precede the clock triggering edge transition time by some minimum time.
- 3. The data input must remain fixed for a given time after the clock triggering edge transition time for reliable operation.
- 4. Propagation delay time is equal to the rise time and fall time of the data.

Which of the above statements is / are correct?

(A) 1, 2, 3 (B) 1, 2 (C) 2, 3 (D) 3, 4

35. Consider the following statements:

(A) 1

- 1. A flip flop is used to store 1-bit of information.
- 2. Race-around condition occurs in a JK flip-flop when both the inputs are 1.
- 3. Master-slave configuration is used in flip-flops to store 2-bits of information.
- 4. A transport latch consists of a D-type flip-flop.
- Which of the above statements is / are correct?

(B) 1, 3, 4

36. Which of the following flip-flop is used as a latch? (A) JK flip flop (B) RS flip flop (C) T flip flop (D) D flip flop

- 37. Which of the following conditions should be satisfied to call an astable multivibrator circuit using discrete components as a digital circuit?
 - 1. A flip-flop is always a digital circuit
 - 2. Only when we assign 1 and 0 to the high and low levels of the output, a flipflop is called a digital circuit.
 - 3. Only if the power supply voltage is maintained at +5V or -5V, it is called a digital circuit.

(C) 1, 2, 4

4. Only if it is in IC form, following the technology of IC manufacture, it is called a digital circuit.

Select the corrector answer from the codes given below:

- (A) 1 (B) 2, 3 (C) 2 (D) 3, 4
- 38. Which of the following circuits come under the class of sequential logic circuits?

1.	Full adder	2.	Full subtractor	3.	Half adder	
4.	JK flip flop	5.	Counter			
Sel	ect the correct and	swer	from the codes gi	ven	below:	
(A)	1, 2	(B)	2, 3	(C)	3, 4	(D) 4, 5

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GATEFORUM Engineering Success	EC- Objective Paper-II	IES-2009
----------------------------------	------------------------	----------

39. Consider the following statements regarding registers and latches: 1. Registers are made of edge-triggered FFs, whereas latches are made from level-triggered FFs. 2. Registers are temporary storage devices whereas latches are not A latch employs cross-coupled feedback connections 4. A register stores a binary word whereas latch does not. Which of the above statements is / are correct? (B) 1, 3 (D)3,4 (A) 1 (C) 2, 3 40. Which of the following capabilities are available in a Universal Shift Register? 1. Shift left 2. Shift right 3. Parallel load 4. Serial add Select the correct answer from the codes given below: (C) 1, 2, 4 (A) 2, 4 (B) 1, 2, 3 (D) 1, 3, 4 41. Which of the following measurements can be done using a counter? 1. Pulse duration 2. Interval between two pulses 3. Amplitude of the pulse 4. Rise time of a pulse Select the correct answer from the codes given below: (A) 1, 2 (B) 2, 3 (C) 1, 4 (D)2,4 4<mark>2.</mark> Match List I (type of n-bit ADC) with List II (characteristics) List I List II Ρ Flash converter 1 Integrating type Successive approximation 2 Q Fastest converter 3 R Counter ramp Maximum conversion time = n-bits 4 S Dual slope Uses a DAC in its feedback path (A) P-2, Q-3, R-4, S-1 (B) P-1, Q-3, R-4, S-2 (C) P-2, Q-4, R-3, S-1 (D) P-1, Q-4, R-3, S-2 43. In which one of the following types of analog to digital converters the conversion time is practically independent of the amplitude of the analog signal? (A) The dual slope integrating type (B) Successive approximation type (C) Counter ramp type (D) Tracking type

44. Consider the function $F(s) = \frac{\varpi}{s^2 + \varpi^2}$ where F(s) is the Laplace Transform of f(t). What is the steady-state value of f(t)?

- (A) Zero (B) One
- (C) Two (D) A value between -1 and +1

[@] All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Engineering Success EC- Objective Paper-II IE

45.	The transfer function	n of a linear-time-inva	ariant system is give	en as $\frac{1}{(s+1)}$. What
		alue of the unit-impuls (B) One		(D) Infinite
46.	What is the characte (A) Sensitive to para (B) Insensitive to inp (C) Neither sensitive	ristics of a good contro meter variation	ol system? on nor sensitive to in	put commands
47.	(A) By the use of ph(B) By the use of ph(C) By the use of bo		se-lead network	
48.	Which of the followin (A) Larger error	g may result in instab (B) High selectivity		(D)Noise
49.		closed-loop system is f 1 and feedback gain (B) 1.5V		
5 <mark>0.</mark>	For what positive variable var	alue of K does the p	olynomial s ⁴ + 8s ³ +	24s ² + 32s + K have
	(A) 10	(B) 20	(C) 40	(D) 80
51.	How many roots with (A) 0	n positive real parts do (B) 1	the equation $s^3 + s^2$ (C) 2	² - s + 1 = 0 have? (D) 3
52.	$s^4 + 8s^3 + 24s^2 + 32s - 5s^2 + 5s^2 + 3s^2 + 3$	equation of a $K = 0$. What is the ratio	ange of the values o	of K for this system
	(A) 0 ≤ K < 80	(B) $0 \le K < 100$	(C) 0 ≤ K < 300	(D) 0 ≤ K < 600
53.	equation break on th	ion $s^2 + 2s + 2 + K(s + e root loci plot?$ (B) -2.414		
54.	How many num $s(s+2)(s+3) + K(s+1)$	ber of branches $(1) = 0$ have?	the root loci	of the equation
	(A) 0	(B) 1	(C) 2	(D)3

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

	íğ	1		
55.		c equation of K = 0 . Which value		em is given as s system is marginally
	(A) 9/16	(B) 19/16	(C) 29/16	(D)39/16
56.	Which of the followi (A) Microsyn (C) a.c. servomotor		a tacho-generator in (B) d.c. servon (D) Magnetic a	notor
57.	The transfer function constants. What type (A) Proportional (C) Proportional plu	e of controller is th		
58.	The transfer function and K _i are constants (A) Proportional			$+\frac{K_i}{s}$ where K_p and K_d
5 <mark>9</mark> .	(C) Proportional plu In a closed loop con system, M to the va	ntrol system, what riation in G?	(D) Integral plu	us derivative the gain of the overall
	(A) $\frac{1}{1+G(s)H(s)}$	(B) $\frac{1}{1+G(s)}$	(C) $\frac{G(s)}{1+G(s)H(s)}$	$\overline{(D)} \frac{G(s)}{1+G(s)}$
6 <mark>0</mark> .	 receiver are correct 1. Its impulse resp 2. It maximizes th 3. It produces ISI 	? oonse depends on th e SNR at the detect	ne signed shape	er in a communicating
	Select the correct a (A) 1, 4	•	•	(D) 1, 2, 4
61.	A single mode fibre (A) Waveguide disp (C) Inter-modal dis	ersion	n which type of disp (B) Material dis (D) Polarizatior	
62.	A balanced modulat (A) DSB-SC	or is used in the ge (B) FM	neration of which of (C) PM	the following signals? (D)PAM
63	An amplitude mod	ulated signal occur	nies a frequency ra	ange from 395kHz to

63. An amplitude modulated signal occupies a frequency range from 395kHz to 405kHz. It can be demodulated by which of the following?

[©] All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

- (A) Using an envelope detector and filter (B) Multiplying with a 395kHz local signal
- (C) Multiplying with a 405kHz local signal (D) Low pass filtering with cut off of 400kHz
- 64. An audio signal is band limited to 4kHz. It is sampled at 8kHz. What will be the spectrum of the sampled signal?
 - (A) -4kHz to 4kHz
 - (B) -8kHz to 8kHz
 - (C) Every 4n kHz and repeating
 - (D) Every ± 8 kHz and repeating as well as at zero (k integer)
- 65. A signal occupies a band 5kHz to 10kHz. For proper error free reconstruction at what rate it should be sampled?
 - (A) 10kHz (B) 20kHz (C) 5kHz (D) $(10+5)\times 2kHz$
- 66. The spectral range of a band pass signal extends from 10MHz to 10.4MHz. What is the minimum sampling frequency required for reconstruction?
 - (A) 20MHz (B) 20.8MHz (C) 20.4MHz (D) 0.8MHz
- 67. An audio signal is to be transmitted digitally. Which is the system best suited for good fidelity?
 (A) 8-bit PCM
 (B) 13-bit PCM
 (C) 32-bit PCM
 - (D) PCM system with non-uniform quantizer
- 68. For good quality signal transmission all frequency components should have the same transmission delay, t_d and same phase shift ϕ_s . What can be said about the statement?
 - (A) Correct
 - (B) True for t_d but not for ϕ_s
 - (C) Not true for t_d but true for ϕ_s
 - (D) Both t_d and ϕ_s are not involved in quality
- 69. Which of the following introduces mode partition noise?
 - (A) Coaxial line (B) Wave guide
 - (C) Fibre transmission line (D) Both coaxial line and wave guide
- 70. Which of the following does not cause losses in optical fibre cables?
 - (A) Impurities (B) Micro-bending
 - (C) Attenuation in glass (D) Stepped index operation

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

EC- Objective Paper-II **IES-2009** www.gateforum.com 71. On which bands, do the optical fibres operate? 1. Ultra violet band 2. Ultra high frequency band 3. Visible light band 4. Infra red band Select the correct answer from the codes given below: (B) 1, 2 (D)1, 3, 4 (A) 1 (C) 1, 2, 3 72. Which one of the following photo-detector does not provide gain? (A) Photo transistor (B) Photo conductor (C) Avalanche photodiode (D) p-i-n photodiode 73. Consider the following statements: In the case of space wave propagation, the signal strength at the receiver is: Directly proportional to transmitter and receiver heights 1. 2. Inversely proportional to distance between transmitter and receiver 3. Directly proportional to frequency Which of the above statements is / are correct? (A) 1, 2 (B) 1, 3 (C) 2, 3 (D)3 74. What was the first commercial geostationary communication satellite? (A) INTELSAT-1 (B) ECHO (C) INSAT-1A (D) SPUTNIK 75. What does a link budget for satellite communication include? (A) Total cost of satellite (B) Cost of satellite plus launch vehicle (C) Signal and noise level in dB (D) Margins of error permitted 76. Which of the following is a transferred electron device? (A) BARITT diode (B) IMPATT diode (C) TRAPATT diode (D)Gunn diode 77. Consider the transmission line of length 37.5 cm, which is terminated into zero resistance. This line is being exited by a source of 1GHz which has an internal impedance of 50ohms. What is the input impedance of the line as seen by the source? (A) 50 ohms (B) 0 ohms (C) 100 ohms (D) infinite ohms 78. Which of the following is a microwave source with a cross-field structure? (A) Double cavity klystron (B) Reflex klystron (C) Magnetron (D) Travelling wave tube 79. Which of the following devices has the negative resistance characteristic? (A) Reflex klystron (B) Gunn diode (C) p-n-p transistor (D) Magnetron

[©] All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GATEFORUM Engineering Success EC- Objective Paper-II **IES-2009**

www.gateforum.com

80.	Which of the followin (A) Thermionic tube	g devices is a hot-elec diode	(B) Schottky-Barrier diode			
	(C) Thomson-Deletic	on diode	(D) Thermal electr	on diode		
81.	Which of the following uses transferred electron effect for production of microwaves?					
	(A) Silicon		(B) Germanium			
	(C) Metal-semicondu	ictor junction	(D) Thermal electr	on diode		
82.	Which of the followin	Which of the following is a microwave power amplifier?				
	(A) Gunn diode		(B) Reflex klystror	ı		
	(C) Magnetron		(D) Travelling wav	e tube		
83.	Consider the followin	g statements:				
	The Klystron and travelling wave tube differ from each other,					
	1. In TWT the microwave circuit is non-resonant					
	2. In klystron, the microwave circuit is resonant					
	3. TWT uses attenuator					
	4. The wave in TWT is a non-propagating wave					
	Which of the above s	tatements are correct				
	(A) 1, 2	(B) 3, 4	(C) 1, 2, 3	(D) 2, 3, 4		
8 <mark>4.</mark>	Which device can de	tect the presence of b	ooth forward and ba	ckward waves in a		
	waveguide?					
	(A) Filter		(B) Detector			
	(C) Directional coupl	er	(D) Magic T			
85.	Which of the followin	g modes can exist in a	a rectangular wave g	juide?		
	(A) TM ₁₀	(B) TE ₁₀	(C) TM ₀₀	(D) TM ₀₁		
86.	Which of the following antenna is obtained by modifying a wave guide?					
	(A) High gain		(B) Reasonably good bandwidth			
	(C) Folded dipole		(D) Parasitic eleme	ents		
87.	Which of the followin	g antenna is obtained	by modifying a wav	eguide?		
	(A) Microstrip antenna (B) Helical antenna			а		
	(C) Horn antenna		(D) Dipole antenna	а		
88.	Which of the following is circularly polarized antenna?					
	(A) Horn	(B) Dipole	(C) Helical	(D)Pyramidal		

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

EC- Objective Paper-II

- 89. Which of the following antennas uses a number of varying length parallel elements?
 - (A) Helical (B) Pyramidal horn
 - (C) Corner reflection (D) Yagi-uda
- 90. The following components are used to measure power output of a 2kW TWT amplifier:
 - 1. TWTA 2. Low pass / high pass filter
 - 3. 20 dB attenuator
 - 4. 40dB directional complex with matched load
 - 5. Power meter
 - What is the correct sequence of connection of these components?
 - (A) 2-4-1-3-5 (B) 1-3-4-2-5 (C) 1-2-4-3-5 (D) 2-4-1-5-3
- 91. Match List I (Microwave measuring instruments) with List II (Measurement effected)

List I		List II	
Bolometer	1	Reflection coefficients	
VSWR meter	2	Half power beam widths	
Cavity wave meter	3	Microwave power	
Pattern recorder		Microwave frequency	
2, Q-1, R-4, S-3		(B) P-3, Q-1, R-4, S-2	
2, Q-4, R-1, S-3		(D) P-3, Q-4, R-1, S-2	
	Bolometer VSWR meter Cavity wave meter	Bolometer1VSWR meter2Cavity wave meter3Pattern recorder42-2, Q-1, R-4, S-3	

- 92. Which one of the following statements is correct?
 - (A) AGC in radio receivers will keep the total signal output fairly constant but the noise components will be reduced; with the result that S/N ratio will improve
 - (B) AGC in radio receivers is a linear operation with respect to both signals and noise
 - (C) Sudden changes in the output while tuning, which may cause damage to the components, is an unavoidable feature of AGC
 - (D) AGC operation is independent of the filter components used in AGC circuit
- 93. Consider the following statements:
 - 1. Taking 2's complement is equivalent to sign change
 - 2. In the 2's complement representation, the most significant bit (MSB) is zero for a positive number.
 - 3. In a 4-bit binary representation of a binary number A, A+1's complement is $A=2^4$.

Which of the above statements is / are correct?

(A) 1, 2	(B) 1, 3	(C) 2, 3	(D)1,2,3

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

EC- Objective Paper-II **IES-2009**

94.	Consider the following statements: 1. Strictly speaking C supports 1-dimensional arrays only						
	2. An array elemen	t may be an array by	tself				
	3. Array elements need not occupy contiguous memory locations.						
	Which of the above statements is / are correct?						
	(A) 1	(B) 2	(C) 1, 2	(D)2,3			
95.	What can be maximu	What can be maximum dimension of an array in C language program?					
	(A) 3		(B) 4				
	(C) 5		(D) It is compiler c	lependent			
96.	With reference to C programming language, which of the following statements are correct?						
		y start with an underso					
		y end with an undersco	ore				
	3. IF is a valid iden						
		significant character	s in an identifier	is implementation			
	Select the correct answer from the codes given below:						
	(A) 1, 2	(B) 2, 3	(C) 1, 2, 3, 4	(D)3,4			
	(7) 1, 2	(0) 2, 3	(C) 1, 2, 3, 4				
97.	How many distinct b	inary trees can be con	structed with three r	nodes?			
571	(A) 1	(B) 2	(C) 3	(D)5			
		(-) -					
98.	Consider the following statements:						
	1. Internal sorting is used, if the number of items to be sorted is very large						
	2. External sorting is used, if the number of items to be sorted is very large						
	3. External sorting	needs auxiliary storag	e				
	4. Internal sorting	needs auxiliary storage	e				
	Which of the above s	statements are correct	?				
	(A) 1, 2	(B) 2, 3	(C) 3, 4	(D)2,4			
99.	Which of the following has a major role in implementation of function calls in C?						
	(A) Processor's regis	sters	(B) Data segment				
	(C) The heap		(D) System stack				
100.	Which one of the following algorithms design techniques is used to quick sort algorithm?						
	(A) Dynamic program	nming	(B) Backtracking				
	(C) Divide and conq	uer	(D) Greedy				

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

(D)3

- 101. There are four different algorithms A1, A2, A3 and A4 to solve a given problem with the complexity order log(n), log(log(n)), nlog(n) and n/log(n) respectively. Which is the best algorithm?
 (A) A1
 (B) A2
 (C) A3
 (D) A4
- 102. Which of the following is / are correct statements?
 - 1. Bus is a group of wires carrying information
 - 2. Bus is needed to achieve reasonable speed of operation
 - 3. Bus can carry data or address
 - 4. A bus can be shared by more than one device
 - Select the correct answer from the codes given below:
 - (A) 1 (B) 1, 2 (C) 2, 3, 4 (D) 1, 2, 3, 4
- 103. Which of the following is the architecture of a computer?
 - 1. Addressing modes, CPU
 - 2. Instruction set, data formats
 - 3. Secondary memory, operating system

Select the correct	answer from th	e codes given below:	
(A) 1, 2	(B) 1, 3	(C) 2, 3	

104. A 3 x 8 decoder with two enable inputs is to be used to address 8 blocks of memory. What will be the size of each memory block when addressed from a sixteen bit bus with two MSB's used to enable the decoder? (A) 2K (B) 4K (C) 16K (D) 64K

105. Match List I (Type of memory) with List II (Used as)

	List I		List II	
Р	DRAM	1	Cache memory	
Q	SRAM	2	Main memory	
R	Parallel access registers	3	BIOS memory	
S	ROM	4	CPU registers	

(A) P-1, Q-4, R-2, S-3

(B) P-3, Q-4, R-2, S-1

(C) P-1, Q-2, R-4, S-3

(D) P-3, Q-2, R-4, S-1

- 106. Which of the following are the memory performance parameters?
 - 1. Access time and latency
 - 2. Block size and Block access time
 - 3. Cycle time and Bandwidth
 - Select the correct answer from the codes given below:
 - (A) 1 (B) 1, 2 (C) 2, 3 (D) 1, 2, 3

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

C	ATEFORUM gineering Success	EC- Objective Paper-II	IES-2009	www.gateforum.com
107.	What is tl (A) 1MB	he address space of 808 (B) 256kB	6 CPU? (C) 1k MB	(D)64kB
108.		the following counters cessor by 5?	can be used to divide th	ne clock frequency of a
	(A) 3-bit	•	(B) 5-bit coun (D) MOD 5 co	
109.	Identifica		nterrupt can be achieved	
	(A) Hard	wired polling vare polling	(B) Priority er	coder circuit
	(D) Subd		ster into a number of s	ub registers which are
110.		the following is used as a 16-bit ADC?	the interface chip for dat	a transmission between
	(A) 8259	(B) 8255	(C) 8253	(D) 8251
111.	(A) Direc		s modes is used in the in (B) Register (D) Immediate	
112.	(A) To sy (B) To sy	nchr <mark>on</mark> ize receiver for re	in RS232 serial commun eceiving every byte ec <mark>eiving</mark> a <mark>sequence o</mark> f by	000000
	. ,	inchronize receiver for re	eceiving the last byte	
113.	(A) The r	number of bits	on which of the following (B) Monotono	city
	(C) Refer	rence voltage	(D) The value	s of resistance
114.			ty in microprocessor base transfer between the μ F	•
	. ,		transfer between the μ F	
	(C) To in devic		ata transfer between the	e memory and the I/O
	(D) To im	nprove the reliability of t	he system	
115.		•	d for which one of the fol	-
	(A) Game (C) Office	e playing e automation	(B) Weather fo (D) Home con	-
			-	

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Following 5 (five) items consist of two statements, one labelled as the Assertion (A) and the other as Reason (R). You are to examine these two statements carefully and select the answers to these items using the codes given below:

- (A) Both A and R are individually true and R is the correct explanation of A
- (B) Both A and R are individually true but R is not the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true

116.	Assertion Reason	:	A fixed bias BJT circuit exhibits better performance as compared to a self bias BJT circuit. A fixed bias BJT circuit uses less components as compared to a self bias BJT circuit
117.	Assertion	:	The small signal analysis of a transistor amplifier is done to obtain the current gain, voltage gain and the conversion efficiency of an amplifier.
	Reason	:	The small signal analysis of a transistor amplifier uses the small signal parameters of the transistor.
1 <mark>18.</mark>	Assertion	G	A rectifier with inductor filter is more efficient for high load current
	Reason	En	In rectifier with inductor filter we can use a larger choke to reduceripple, larger choke will have higher d.c. resistance which will result in lower d.c. output voltage for higher load current
1 <mark>19</mark> .	Assertion		It is not desirable to drive a transistor into hard saturation in high speed switching circuits.
	Reason	:	It may not be possible to bring it back to cut off state, if it is driven into hard saturation.
120.	Assertion	:	When all inputs of a NAND-gate are shorted to get a one input, one output gate, it becomes an inverter.
	Reason	:	When all inputs of a NAND-gate are at logic '0' level, the output is at logic '1' level.

 $[\]odot$ All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.