C13-R3: DIGITAL SYSTEM DESIGN

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

- a) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.
- b) Show an implementation of the Equality comparator of two 2-bit vectors using a network of 2 input multiplexers.
- c) Explain Parallel input Unidirectional Shift register with Load and Shift control.
- d) Explain how Wired Logic can be implemented in TTL family.
- e) Differentiate between MOS and Junction transistor.
- f) Describe a Schottky TTL gate by giving an appropriate diagram.
- g) Differentiate between behavioral and dataflow modeling in terms of Signal assignments.

(7x4)

2.

- a) Design a minimal two-level gate combinational network that detects the presence of any of the six illegal groups in the 8421 code by providing a logic-1 output.
- b) Realize following function with a 3 to 8 line decoder + gates.

$$F1(x2,x1,x0) = \pi M(0,3,5)$$

 $F2(x2,x1,x0) = \pi M(2,3,4)$

c) Describe depletion and enhancement mode devices. Show the use of MOSFET as Resistor.

(6+6+6)

3.

- a) Using a 4 bit binary adder, design a network to convert a decimal digit in excess-3 code into a decimal digit in 8421 codes.
- b) Derive PLA program table for a combinational circuit that squares a 3-bit number. Minimize the number of product terms.

(9+9)

4.

- a) Design up-down counter using J-K flip-flops.
- b) What do you mean by lock-out of a counter? How do you test for the problem of lock-out of a counter? How do you eliminate this problem?
- c) What is Race Around problem? How is it handled in Master-Slave J-K flip-flop?

(8+6+4)

5.

- a) Design a Seguence detector which detects following binary sequence: 0 1 1 0 1 0
- b) Design a sequential circuit described by the following state equations. Use JK flip-flops.

$$A(t+1) = xAB + yA'C + xy$$

$$B(t+1) = xAC + y'BC'$$

$$C(t+1) = x'B + yAB'$$

(9+9)

6.

- a) Discuss the usage of packages & libraries and their binding in VHDL.
- b) Write a VHDL code for 16 X 8 bit memory with address, data, read /write, enable inputs.

7.

a) Write a VHDL code for Universal shift register with Parallel load facility. Use any of three modeling.

```
b)
     library ieee;
     use ieee.std logic 1164.all;
     entity module1 is
           port(1,r,s1: in std_logic;
                 q: out std_logic_vector(3 downto 0);
                 s2: out std logic);
     end module1;
     architecture behave of module1 is
           signal f: std logic vector(3 downto 0);
     begin
           process(r,1)
           if(r = 1) then
                f <= "0000";
           elsif (l'event and (l= ^1)) then
                 f <= f(2 downto 0) & s1;</pre>
           end if;
           end process;
           q \ll f;
           s2 <= f(3);
     end behave;
```

- i) Draw a black box of VHDL module for above code and discuss actions performed.
- ii) Simulate the waveform of the above code.

(9+9)