
B.TECH. DEGREE VII SEMESTER EXAMINATION IN ELECTRONICS AND COMMUNICATION ENGINEERING JUNE 2001

EC 701 DIGITAL SIGNAL PROCESSING

Time:	3 Hours	Maximum Marks:	100
I.	(a)	Define z - transform of a discrete time signal. Find the z - transform of $f(t) = \cos \omega t$.	(6)
	(b)	State and prove any two properties of z - transform.	(8)
	(c)	Find inverse z transform of	(0)
		$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)} z > \frac{1}{3}.$	(6)
		OR	
II	a)	Describe the important sequences used in digital signal processing.	(8)
	b)	What is meant by time invariance? Check the filter given by the equation $y(nT) = 2nT x$ (nT) for time invariance.	(8)
	c)	Distinguish between causal and anticausal sequences.	(4)
m	a)	Compute H(z) from H _R (c ^{jw}) = $\frac{1 - \alpha \cos w}{1 - 2\alpha \cos w + \alpha^2}$, $ \alpha < 1$	
		` `	10)
	b)	Define the convolution sum of a two dimensional sequence State the condition for stability of a two dimensional	
		·	10)
		OR	,
IV	a)	Determine the frequency response of a 2-dimensional filter for which the unit sample response is $h(m, n) = 1 m < M$ and $ n < N$ GNEERING	
		n(m, n) = 1 $ m < M$ and $ n < N$	

0 otherwise

- Distinguish between circular and linear discrete convolutions. (8)
- Find the circular and linear convolutions of the b) sequences $\{1, -1, 1, 1\}$ and $\{1, 2, 3, 4, 5\}$ (12)

OR

Find the 8 point DFT of the sequence

$$x(n) = 1 \quad -3 \le n \le 3$$

0 Otherwise

using any radix - 2 algorithm. Draw flow graph (20)and explain.

- With the help of an example, explain the various a) schemes of realization of an FIR filter. (12)
- b) A linear time invariant system has an output $y(n) = x(n) + \frac{1}{3}x(n-1) + \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2)$ Identify the type of the filter and comment on its stability. (8)

OR

Contd....3

- VIII Explain the windowing method for FIR filter design. a) Briefly describe the popular windows. (12)
 - b) Explain impulse invariance method and convert the analog system function $Ha(s) = \frac{s+0.1}{(s+0.1)^2+9}$ into digital filter using this method. (8)
- ΙX Explain briefly the different types of arithmetic used a) in digital filters. Also explain the effect of quantisation on each type of arithmetic. (14)
 - (6) b) Explain limit cycle oscillations.

OR

- X What is meant by coefficient inaccuracy error? (8)
 - With a basic block diagram explain the salient features b) (12)of TMS 320 IC.
