BTS 157(F)

## B.TECH. DEGREE VII SEMESTER EXAMINATION IN ELECTRONICS AND COMMUNICATION ENGINEERING MAY 2002

## EC 701 DIGITAL SIGNAL PROCESSING

(1995 Admissions)

Time: 3 Hours Maximum Marks: 100

L (a) Determine the response of a Linear Time invariant system with impulse response

$$h(n) = 0.5\delta(n-2) + \delta(n-1) + 0.5\delta(n)$$

for an input sequence

$$x(n) = \delta(n-3) + \delta(n-2) + \delta(n-1) + \delta(n).$$
 (12)

- (b) Determine the autocorrelation sequence corresponding to  $x(n) = \sin \frac{2\pi n}{M} \text{ where } M \text{ is a positive integer, and check}$  the periodicity of the sequence from autocorrelation. (8)
- II. (a) Distinguish between Fourier transform and z transform. (4)
  - (b) Explain the different methods used for the computation of inverse Z-transform. (8)
  - (c) Evaluate the inverse z transform of

(i) 
$$Y(z) = \frac{12 + 8z^{-1} - 3z^{-2}}{12 - 7z^{-1} + z^{-2}} \qquad |z| > \frac{1}{3}$$

(ii) 
$$Y(z) = \frac{2}{(z+0.5)(z+1)} \quad 0.5 < |z| < 1$$

$$(S) \quad (S) \quad (S$$

III. (a) Determine the unit sample response of a two dimensional filter for which the unit impulse response

$$h(m,n) = \begin{cases} 1 & |m| < M \text{ and } |n| < N \\ 0 & \text{otherwise} \end{cases}$$
 (12)

- (b) Define a 2 dimensional unit step sequence and unit impulse sequence.
  - Express 2 dimensional unit step sequence in terms of unit impulse sequence.

## OR

- IV. (a) Define separability and prove that if the input x(m,n) and impulse response h(m,n) are separable, then the output y(m,n) is also separable. (10)
  - (b) State the Hilbert Transform relations for the DFT. (10)
- V (a) What is meant by block convolution?
  Explain any one method in detail. (10)
  - (b) Define DFT and state and prove any two properties of it.

    Establish the relation between DFT and z transform. (10)

    OR

## Evaluate the output of an LTI system with impulse response

$$h(n) = 0.5 n = 0$$

$$= 1 n = 1$$

$$= 0 otherwise$$

for an input sequence

VI.

$$x(n) = 1 n = 0$$

$$= 0.5 n = 1$$

$$= 0 \text{otherwise}$$

using DFT approach. (20)

Contd......3.

(8)

VII. Design a Chebyshev low pass filter using Bilinear transform for the givben specifications.

Pass band  $-1dB < |H(j\Omega)| \le 0dB$  for  $0 \le \Omega \le 1404\pi$  rad |sec

Stop band  $|H(j\Omega)| < -60dB$  for  $\Omega \ge 8268\pi$  rad |sec sampling frequency 10 KHz. (20)

æ

VIII. (a) Obtain direct form I, II, parallel and cascade structures for the system

$$H(z) = \frac{2(1-z^{-1})(1+\sqrt{2}z^{-1}+z^{-2})}{(1+0.5z^{-1})(1-0.9z^{-1}+0.81z^{-2})}$$
(14)

(b) Explain the Fourier transform method of design of FIR filters. (6)

IX. (a) Briefly explain the different types of problems introduced by finite word length in a digital filter. (12)

(b) Determine the variance of round-off noise at the output of the two cascade realization of the filter system with transfer function

$$H_1(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + H_2(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}$$
 (8)

(8)

OR

X. (a) What is meant by limit cycle oscillations.

(b) Obtain the dead band range of the filter described by

$$y(n) = 0.95y(n-1) + x(n)$$
 (12)

\*\*\*

.