2/12/12 Code: A-20 ## AMIETE - ET (OLD SCHEME) | Code: AE27
Time: 3 Hours | | | Subject: DIGITAL HARDWARE DESIGN Max. Marks: 100 | | | | | | | | | |-----------------------------|--|---|---|---|-------------|--|--|---|--|--|--| | | | | | | | | | NOTE: There are 9 Questions in all. Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. | | | | | Q.1 | Cł | noose the c | correct or the best alternative in the following: | | (2×10) | | | | | | | | | a. In a four variable Karnaugh map eig | | | p eight adjacent cells give a | | | | | | | | | | | , , | variable term
e variable term | (B) single variable term(D) four variable term | | | | | | | | | | b. | Why do w | ve need additional SO | P terms when programming an array | logic cell? | | | | | | | | | | (B) To im (C) To res | prove dynamic timings
prove static timings
move only static hazar
move both static hazar | ds | | | | | | | | | | c. | c. Two's complement of a two's complement will return | | | | | | | | | | | | | (A) 0 (C) Origin | nal number | (B) Same number with negat(D) None | tive sign. | | | | | | | | | d. | Calculate | the delay at an i-th sta | n stage of FA takes propagation time t _S | | | | | | | | | | | (A) $2 \cdot t_{S}$ | | (B) 2 .i . t _S | | | | | | | | | | | (C) $2 / t_S$ | | (D) i. t_S | | | | | | | | | | e. | Race-aro | und condition is assoc | iated with the | | | | | | | | | | | (A) RS FI
(C) MS-J | ip Flop
K Flip Flop | (B) JK Flip Flop
(D) D Flip Flop | | | | | | | | | | f. | | | | | | | | | | | | | | (A) Outpu
(C) Both | at changes (A) and (B) | (B) Clock edge input(D) None | | | | | | | | g. In VHDL, Configuration statement is used to 2/12/12 Code: A-20 | | | (A) bind the entity and the architecture (B) bind the components and the functions (C) bind the package and the Libraries (D) bind the component instance to an entity-architecture pair | | | | | | | |-----|---|---|---|----------------------|--|--|--|--| | | h. | The entity specifies | | | | | | | | | | (A) the number of ports(C) the type of ports | | | | | | | | | i. The mechanism for delaying the new value is called | | | | | | | | | | | (A) Statement concurrency(C) Both (A) and (B) | (B) Event scheduling(D) None of the above | | | | | | | | | | | | | | | | | | | (A) Concurrent statements(C) Configuration statements | (B) Sequential statements(D) None of the above | | | | | | | | | - | FIVE Questions out of EIGHT Qu
Each question carries 16 marks. | estions. | | | | | | Q.2 | a. | Explain how CAD software tools help to improve the productivity, correctness and quality of design. (8) | | | | | | | | | | Realize XOR gates using AND, 1
Realize 4 bit adder circuit using 1- | (4)
(4) | | | | | | | Q.3 | | Explain the working of clocked SI Explain the CLOCK SKEW with | (5)
(7) | | | | | | | | c. | Realize positive edge-triggered D- | 2 counter. (4) | | | | | | | Q.4 | a. | Draw the circuit of binary-to-octa | (6) | | | | | | | | b. | Draw the 1 to 8 demultiplexer circ | (6) | | | | | | | | c. | Design a 4 bit ripple counter (Asy | (4) | | | | | | | Q.5 | a. | Design a digital circuit for the pulse a positive transition at its START | ± | riggered by | | | | | | | b. | Design a 4-bit shift register using | (4) | | | | | | | | | | c. Design a 4 bit PISO circuit us | ing D Flip Flop. (4) | | | | | | Q.6 | a. | Design a sequence recognizer for | detecting the sequence 1001. | (10) | | | | | | | b. | Explain all the design constructs o | (6) | | | | | | 2/12/12 Code: A-20 - Q.7 a. Write a VHDL code to describe D-Latch with clock enabled. (4) - b. Write a VHDL code for the 2-bit up-counter with synchronous reset. (6) - c. Write a VHDL code for a Priority Encoder. (6) - Q.8 a. With the aid of a Quine-McCluskey (tabular) method derive minimal sum of products expressions for the following: (8) $$f(X_1, X_2, X_3, X_4) = \sum (0,1,2,5,6,7,8,9,10,13,15)$$ - b. Decompose the following functions $F(G(X_1,X_2),X_3,X_4) \text{ and } F(G(X_1,X_3),X_2,X_4)$ - Q.9 a. Realize 13 variable symmetric function using 10 full adders and 1 decoder. (8) - b. Write the procedure for identifying symmetric functions. (8)