ALCCS

Code: CS41

Subject: NUMERICAL & SCIENTIFIC COMPUTING

Time: 3 Hours

MARCH 2010 Max. Marks: 100

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.
 - Q.1 a. Find the number of terms of the exponential series such that their sum gives the value of e^x correct to six decimal places at x = 1.
 - b. Find a root of the equation $xe^x = \cos x$, by the secant method upto two iterations.
 - c. Factorize the matrix $\begin{pmatrix} 3 & 2 & 7 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}$ using LU decomposition.
 - d. Given the matrix A = I + L + U, where $A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \end{bmatrix}$, L and U are the lower and upper triangular matrices respectively, decide whether Jacobi method converges to the solution of Ax = b.
 - e. Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ using Gauss formula for n = 2.
 - f. Solve

$$\frac{dy}{dx} = y - \frac{2x}{y}$$
; $y(0) = 1$ at $x = 0.1$ using Euler method.

g. Show that $\Delta^3 y_2 = \nabla^3 y_5$.

- (7×4)
- Q.2 a. Find a real root of $2x \log_{10} x = 7$ correct to four decimal places using Newton's Method.
 - b. One entry in the following table is incorrect and y is a cubic polynomial in x. Use the difference table to locate and correct the error: (9+9)

X	0	1	2	3	4	5	6	7
у	25	21	18	18	27	45	76	123

 $Q.3\,$ $\,$ a. Solve by Gauss-Seidel method, the following system of equations:

12/31/11 **ALCCS**

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

b. Solve by Relaxation method, the system of equations:

$$10x_1 - 2x_2 - 2x_3 = 6;$$

-x₁ + 10x₂ - 2x₃ = 7; (9+9)

 $-x_1-x_2+10x_3=8$. a. Using Jacobi's method, find all the eigenvalues and the eigenvectors of the matrix **Q.4**

$$A = \begin{pmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{pmatrix}$$

 $A = \begin{pmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{pmatrix}$ b. Using inverse interpolation, find the real root of the equation $x^3 + x - 3 = 0$ which is close to 1.2. (9+9)

a. The following table gives the distance in nautical miles of the visible horizon for the given heights in feet above the Q.5 earth's surface:

x = height	100	150	200	250	300	350	400
y = distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

(9+9)

(9+9)

Find the value of y when x = 218 ft and x = 410 ft.

b. From the given data, find the maximum value of v:

X	-1	1	2	3
У	-21	15	12	3

a. Use Romberg's method to compute $\int_{0}^{1} \frac{dx}{1+x^2}$ correct to four decimal places.

b. Determine f(x) as a polynomial in x for the following data:

X	-4	-1	0	2	5
у	1245	33	5	9	1335

a. Using Runge-Kutta method of fourth order, solve for y(0.1), y(0.2) given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1. **Q.7**

b. Using Taylor's series method, solve $\frac{dy}{dx} = x^2 - y$, y(0) = 1 at x = 0.1, 0.2. (12+6)