BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination June. 2008

CS-71: COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours Maximum Marks: 75

Note: Question number 1 is **compulsory**. Attempt any **three** questions from the rest. In total you have to answer **four** questions.

- 1. (a) If the number $x^* = 0.678$ approximates the number x = 0.6775 correct upto n significant decimal digits, then calculate the value of n.
 - (b) Evaluate $f(x) = \frac{x^3}{x \sin x}$ when $x = 0.12 \times 10^{-10}$ using two digit arithmetic.
 - (c) If $u = \frac{5xy^2}{z^3}$ and error in x, y, z is 0.001, compute the relative maximum error in u when x = y = z = 1.

5

5

- (d) Prove that $e^{-hD} = 1 \nabla$.
- (e) If a, b, c, d are arguments of $f(x) = \frac{1}{x}$, show that

$$f(a, b, c, d) = \frac{-1}{abcd}.$$

5

5

5

5

5

5

5

(f) Use Lagrange's Interpolation formula to find the value of y when x = 10, if the value of x and y are given as below:

х	5	6	9	11
У	12	13	14	16

2. (a) For the following equation

$$x^4 - x - 10 = 0$$

determine initial approximation for finding the smallest positive root. Use these to find the roots correct to three decimal places with the following methods:

- (i) Regula Falsi Method
- (ii) Newton Raphson Method
- (b) Find cubic polynomial which takes the following values:

$$y(0) = 1$$
 $y(1) = 0$ $y(2) = 1$ $y(3) = 10$.

Find y(4) using Newton's Difference Interpolation formula.

3. (a) Find a real root of the equation $x^3 + x^2 - 1 = 0$ on interval [0, 1] with an accuracy of 10^{-4} using iteration method.

2

CS-71

$$4x_1 + x_2 + x_3 = 4$$

$$x_1 + 4x_2 - 2x_3 = 4$$

$$3x_1 + 2x_2 - 4x_3 = 6$$

(c) By using Simpson
$$\frac{1}{3}$$
 rule, evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$.

Divide the interval into six equal parts.

$$8x - 3y + 2z = 20$$

 $4x + 11y - z = 33$
 $6x + 3y + 12z = 35$

(b) Find
$$\int_{1}^{7} f(x) dx$$
 using Trapezoidal Rule for the

following:

У
2.105
2.808
3.614
4.604
5.857
7.451
9.467

5

5

5

- (c) Solve $y^1 = -y$ with y(0) = 1 for x = 0.04 and step length 0.01 using Euler's method.
- 5. (a) Given $\frac{dy}{dx} = \sqrt{x+y}$ with y(0.4) = 0.41. Find y(0.6) with h = 0.2 using RKM of fourth order.
 - (b) Find a root of the equation $x^3 2x 5 = 0$ using Bisection method in three iterations.
 - (c) If x^* approximates x correct to 4 significant decimal digits then calculate how many significant decimal digits $e^{x^*/100}$ approximates $e^{x/100}$.