AIEEE-2011

PHYSICS

61. A Carnot engine operating between temperatures T_{1} and T_{2} has efficiency $1 / 6$. When T_{2} is lowered by 62 K , its efficiency increases to $1 / 3$. Then T_{1} and T_{2} are, respectively:
(1) 310 K and 248 K
(2) 372 K and 310 K
(3) 372 K and 330 K
(4) 330 K and 268 K

ANS..... 2
62. A pulley of radius 2 m is rotated about its axis by a force $F=\left(20 t-5 t^{2}\right)$ newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is $10 \mathrm{~kg} \mathrm{~m}^{2}$, the number of rotations made by the pulley before its direction of motion if reversed, is:
(1) more than 9
(2) less than 3
(3) more than 3 but less than 6
(4) more than 6 but less than 9

ANS..... 3

63 Three perfect gases at absolute temperatures T_{1}, T_{2} and T_{3} are mixed. The masses of molecules are m_{1}, m_{2} and m_{3} and the number of molecules are n_{1}, n_{2} and n_{3} respectively. Assuming no loss of energy, the final temperature of the mixture is:
(1) $\frac{n_{1}^{2} T_{1}^{2}+n_{2}^{2} T_{2}^{2}+n_{3}^{2} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
(2) $\frac{T_{1}+T_{2}+T_{3}}{3}$
(3) $\frac{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}{n_{1}+n_{2}+n_{3}}$
(4) $\frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$

ANS..... 2
64. A boat is moving due east in a region where the earth's magnetic field is $5.0 \times 10^{-5} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$ due north and horizontal. The boat caries a vertical aerial 2 m long. If the speed of the boat is 1.50 ms^{-1}, the magnitude of the induced emf in the wire of aerial is:
(1) 0.15 mV
(2) 1 mV
(3) 0.75 mV
(4) 0.50 mV

ANS..... 1
65. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach its other end. During the journey of the insect, the angular speed of the disc:
(1) first increases and then decrease
(2) remains unchanged
(3) continuously decreases
(4) continuously increases

ANS..... 1
66. Two identical charged spheres suspended from a common point by two massless strings of length I are initially a distance $d(d \ll l)$ a part because of their mutual repulsion. The charge begins to leak from both the spheres at a constant rate. As a result the charges approach each other with a velocity v. Then as a function of distance x between them,
(1) $v \propto x$
(2) $v \propto x^{-1 / 2}$
(3) $v \propto x^{-1}$
(4) $v \propto x^{1 / 2}$

ANS..... 2
67. 100 g of water is heated from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is $4184 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$):
(1) 2.1 kJ
(2) 4.2 kJ
(3) 8.4 kJ
(4) 84 kJ

ANS..... 3
68. The half life of a radioactive substance is 20 minutes. The approximate time interval $t_{2}-t_{1}$ between the time t_{2} when $\frac{2}{3}$ of it has decayed and time t_{1} when $\frac{1}{3}$ if it had decayed is:
(1) 28 min
(2) 7 min
(3) 14 min
(4) 20 min

ANS..... 4
69. Energy required for the electron excitation in Li^{++}from the first to the third Bohr orbit is:
(1) 122.4 eV
(2) 12.1 eV
(3) 36.3 eV
(4) 108.8 eV

ANS..... 4
70. The electrostatic potential inside a charged spherical ball is given by $\phi=a r^{2}+b$ where r is the distance from the cetnre; a, b are constants. Then the charge density inside the ball is:
(1) $-6 a \varepsilon_{0}$
(2) $-24 \pi a \varepsilon_{0} r$
(3) $-6 a \varepsilon_{0} r$
(4) $-24 \pi a \varepsilon_{0}$

ANS..... 1
71. Work done in increasing the size of a soap bubble from a radius of 3 cm to 5 cm is nearly (Surface tension of soap solution $=0.03 \mathrm{Nm}^{-1}$):
(1) $0.4 \pi \mathrm{~mJ}$
(2) $4 \pi \mathrm{~mJ}$
(3) $0.2 \pi \mathrm{~mJ}$
(4) $2 \pi \mathrm{~mJ}$

ANS..... 1
72. A resistor ' R ' and $2 \mu \mathrm{~F}$ capacitor in series is connected through a switch to 200 V direct supply. Across the capacitor is a neon bulb that lights up at 120 V . Calculate the value of R to make the bulb light up 5 s after the switch has been closed. $\left(\log _{10} 2.5=0.4\right)$
(1) $3.3 \times 10^{7} \Omega$
(2) $1.3 \times 10^{4} \Omega$
(3) $1.7 \times 10^{5} \Omega$
(4) $2.7 \times 10^{6} \Omega$

ANS..... 4

73. A current I flows in an infinitely long wire cross section in the form of a semi circular ring of radius R. The magnitude of the magnetic induction along its axis is:
(1) $\frac{\mu_{0} I}{4 \pi R}$
(2) $\frac{\mu_{0} I}{\pi^{2} R}$
(3) $\frac{\mu_{0} I}{2 \pi^{2} R}$
(4) $\frac{\mu_{0} I}{2 \pi R}$

ANS..... 2
74. An object moving with speed of $6.25 \mathrm{~m} / \mathrm{s}$, is decelerated at a rate given by :

$$
\frac{d v}{d t}=-2.5 \sqrt{v}
$$

where v is the instantaneous speed. The time taken by object, to come to rest, would be
(1) 8 s
(2) 1 s
(3) 2 s
(4) 4 s

ANS..... 3
E1
75. Direction:

The question has a paragraph followed by two statements, Statement - 1 and Statement - 2. Of the given four alternatives after the statements, choose the one that describes the statements.

A thin air film is formed by putting the convex surface of a plane - convex lens over a plane glass plate. With monochromatic light, this film gives an interference pattern due to light reflected from the top (convex) surface and the bottom (glass plate)surface of the film

Statement - 1:

When light reflected from the air glass plate interface, the reflected wave surface a phase change of π.

Statement - 2:

The centre of the interference pattern is dark.
(1) Statement -1 is false, Statement -2 is true
(2) Statement -1 is true, Statement -2 is false
(3) Statement - 1 is true, Statement - 2 is true and Statement -2 is the correct explanation of Statement-1
(4) Statement - 1 is true, Statement - 2 is true and Statement -2 is not the correct explanation of Statement 1

ANS..... 3
76. Two bodies of masses m and $4 m$ are placed at a distance r. The gravitational potential at a point on the line joining them where the gravitational field is zero is:
(1) $-\frac{9 G m}{r}$
(2) zero
(3) $-\frac{4 G m}{r}$
(4) $-\frac{6 G m}{r}$

ANS..... 1
77. This question has Statement - 1 and Statement - 2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement - 1:

Sky wave signals are used for long distance radio communication. These signals are in general, less stable than ground wave signals.

Statement - 2:

The state of of ionosphere varies from hour to hour, day to day and season to season.
(1) Statement - 1 is false, Statement -2 is true
(2) Statement -1 is true, Statement -2 is false
(3) Statement - 1 is true, Statement - 2 is true and Statement -2 is the correct explanation of Statement-1
(4) Statement -1 is true, Statement -2 is true and Statement -2 is not the correct explanation of Statement 1

ANS..... 1
78. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $\mathrm{t}=$ 0 . The time at which the energy is stored equally between the electric and the magnetic fields is:
(1) $\sqrt{L C}$
(2) $\pi \sqrt{L C}$
(3) $\frac{\pi}{4} \sqrt{L C}$
(4) $2 \pi \sqrt{L C}$

ANS..... 3
79. This question has Statement - $\mathbf{1}$ and Statement - 2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement - 1:

A metallic surface is irradiated by a monochromatic light of frequency $v>v_{0}$ (the threshold frequency). The maximum kinetic energy and the stopping potential are $K_{\max }$ and V_{0}. If the frequency incident on the surface is doubled, both the $K_{\max }$ and V_{o} are also doubled.

Statement - 2:

The maximum kinetic energy and the stopping potential of photoelectrons emitted from a surface are linearly dependent on the frequency of incident light.
(1) Statement -1 is false, Statement -2 is true
(2) Statement - 1 is true, Statement -2 is false
(3) Statement - 1 is true, Statement -2 is true and Statement -2 is the correct explanation of Statement - 1
(4) Statement - 1 is true, Statement -2 is true and Statement -2 is not the correct explanation of Statement 1

ANS..... 1
80. Water is flowing continuously from a tap having an internal diameter $8 \times 10^{-3} \mathrm{~m}$. The water velocity as it leaves the tap is $0.4 \mathrm{~ms}^{-1}$. The diameter of the water stream at a distance 2×10^{-1} m below the tap is close to:
(1) $3.6 \times 10^{-3} \mathrm{~m}$
(2) $5.0 \times 10^{-3} \mathrm{~m}$
(3) $7.5 \times 10^{-3} \mathrm{~m}$
(4) $9.6 \times 10^{-3} \mathrm{~m}$

ANS..... 1

81 A mass M, attached to a horizontal spring, executes S.H.M. with amplitude A_{1}. When the mass M passes through its mean position then a smaller mass m is placed over it and both of them move together with amplitude A_{2}. The ratio of $\left(\frac{A_{1}}{A_{2}}\right)$ is:
(1) $\left(\frac{M+m}{M}\right)^{1 / 2}$
(2) $\frac{M}{M+m}$
(3) $\frac{M+m}{M}$
(4) $\left(\frac{M}{M+m}\right)^{1 / 2}$

ANS..... 1
82. Two particles are executing simple harmonic motion of the same amplitude A and frequency ω along the x-axis. Their mean position is separated by distance $X_{0} X_{0}>A$. If the maximum separation between them is $X_{0}+A$, the phase difference between their motion is:
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$

ANS..... 3
83. If a wire is stretched to make it 0.1% longer, its resistance will:
(1) decrease by 0.05\%
(2) increase by 0.05%
(3) increase by 0.2%
(4) decrease by 0.2%

ANS..... 3
84. A water fountain on the ground sprinkles water all around it. If the speed of water coming out of the fountain is v, the total area around the fountain that gets wet is:
(1) $\pi \frac{v^{2}}{g^{2}}$
(2) $\pi \frac{v^{2}}{g}$
(3) $\pi \frac{v^{4}}{g^{2}}$
(4) $\frac{\pi}{2} \frac{v^{4}}{g^{2}}$

ANS..... 3
85. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and is suddenly brought to rest. Assuming no heat is lost to the surroundings, its temperature increases by:
(1) $\frac{\gamma-1}{2 R} M v^{2} \mathrm{~K}$
(2) $\frac{\gamma-1}{2 \gamma+1 R} M v^{2} \mathrm{~K}$
(3) $\frac{\gamma-1}{2 \gamma R} M v^{2} \mathrm{~K}$
(4) $\frac{\gamma M v^{2}}{2 R} \mathrm{~K}$

ANS..... 1
86. A screw gauge gives the following reading when used to measure the diameter of a wire.

Main scale reading : 0 mm

Circular scale reading : 52 divisions
Given that 1 mm on main scale corresponds to 100 divisions of the circular scale.
The diameter of wire from the above data is:
(1) 0.005 cm
(2) 0.52 cm
(3) 0.052 cm
(4) 0.026 cm

ANS..... 3

87 A mass m hangs with the help of a string wrapped around a pulley on a frictionless bearing. The pulley has mass m and radius R. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass m, if the string does not slip on the pulley, is:
(1) $\frac{g}{3}$
(2) $\frac{3}{2} \mathrm{~g}$
(3) g
(4) $\frac{2}{3} \mathrm{~g}$

ANS..... 4
88. The transverse displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$ of a wave on a string is given by

$$
y(x, t)=e^{-a x^{2}+b t^{2}+2 \sqrt{a b} x t} .
$$

This represents a:
(1) standing wave of frequency $\frac{1}{\sqrt{b}}$
(2) wave moving in $+x$ direction with speed $\sqrt{\frac{a}{b}}$
(3) wave moving in -x direction with speed $\sqrt{\frac{b}{a}}$
(4) standing wave of frequency \sqrt{b}

ANS..... 3
89. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car 2.8 m behind the first car is overtaking the fist car at a relative speed of $15 \mathrm{~m} / \mathrm{s}$. The speed of the image of the second car as seen in the mirror of the first one is:
(1) $15 \mathrm{~m} / \mathrm{s}$
(2) $\frac{1}{10} \mathrm{~m} / \mathrm{s}$
(3) $\frac{1}{15} \mathrm{~m} / \mathrm{s}$
(4) $10 \mathrm{~m} / \mathrm{s}$

ANS..... 3
90. Let the $x-z$ plane be the boundary between two transparent media. Medium 1 in $z \geq 0$ has a refractive index of $\sqrt{2}$ and medium 2 with $z<0$ has a refractive index of $\sqrt{3}$. A ray of light in medium 1 given by the vector $\vec{A}=6 \sqrt{3} \hat{i}+8 \sqrt{3} \hat{j}-10 \hat{k}$ is incident on the plane of separation. The angle of refraction in medium 2 is:
(1) $75 \bigcirc$
(2) $30 \cong$
(3) 450
(4) $60 \div$

ANS..... 3

