ENTRANCE EXAMINATION,2005 Ph.D. Mathematics/ Applied Mathematics

TIME: 2 hours	MAX. MARKS: 75
	Part A. 25 Part R. 50

HALL TICKET No. _____

INSTRUCTIONS

- 1. Calculators are not allowed.
- 2. Answer all the 25 questions in Part A. Each correct answer carries **1 mark** and each **wrong** answer carries **minus quarter mark**. Note that this means that wrong answers are penalised by negative marks. So do not gamble.
- 3. Instructions for answering Part B are given at the beginning of Part B.
- 4. Do not detach any pages from this answer book. It contains 8 pages. A separate answer book will be provided for Part B.
- 5. \mathbb{R} always denotes the set of real numbers, \mathbb{Z} the set of integers, \mathbb{N} the set of natural numbers and \mathbb{Q} the set of rational numbers. For any set X, $\mathcal{P}(X)$ is the power set of X.

Part-A

Answer Part A by circling the correct answer. A correct answer gets 1 mark and a wrong answer gets -(1/4) mark.

- 1. If $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$ then the rank of (A I) (I is the 4×4 identity matrix) is
 - a. 4 b. 3 c. 2 d. 1 e. 0
- 2. The minimal polynomial of $\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$ is a. (X-2) b. $(X-2)^2$ c. $(X-2)^3$ d. $(X-2)^4$ e. $(X-2)^5$
- 3. Let $S = \{v_1, v_2, ..., v_9\}$ be 9 vectors in \mathbb{R}^6 . Then
 - a. S contains a basis of \mathbb{R}^6 .
 - b. there exist 6 linearly independent vectors in S.
 - c. S must span \mathbb{R}^6 .
 - d. there exist 3 linearly independent vectors in S.
 - e. none of the above.
- 4. Let $\sum a_n$ be a convergent series of complex numbers but let $\sum |a_n|$ be divergent. Then it follows that
 - a. $a_n \to 0$ but $|a_n|$ does not converge to 0.
 - b. the sequence $\{a_n\}$ does not converge to 0.
 - c. only finitely many a_n 's are 0.
 - d. infinitely many a_n 's are positive and infinitely many are negative.
 - e. none of the above.

- 5. I. A bounded sequence in R need not be convergent.
 - II. A bounded sequence in \mathbb{R} need not have a convergent subsequence.
 - III. A bounded sequence in \mathbb{R} need not have a constant subsequence.
 - a. All three statements are true.
 - b. None of these statements is true.
 - c. I and II are true but III is false.
 - d. Only I is true.
 - e. none of the above.
- 6. Let $f(x) = \max(\sin x, \cos x)$ for all $x \in \mathbb{R}$. Then
 - a. f is differentiable on \mathbb{R} .
 - b. f is nowhere differentiable.
 - c. f is differentiable except at 0.
 - d. f is differentiable except at a countable set of points.
 - e. none of the above.
- 7. Let, for each $x \in [0,1)$, $x = 0.x_1x_2x_3...$ be the decimal expansion of x not eventually all 9's. Define $f:[0,1) \to \mathbb{R}$ by $f(x) = x_1$, the first digit in the expansion. Then $\int_0^1 f(x) \ dx =$
 - a. $4\frac{1}{2}$ b. 10 c. 0 d. 1 e. does not exist.
- 8. The function $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{at } (0,0) \end{cases}$ is
 - a. continuous at (0,0) but partial derivatives do not exist at (0,0).
 - b. continuous at (0,0) and partial derivatives exist at (0,0).
 - c. discontinuous at (0,0) and partial derivatives do not exist at (0,0).
 - d. discontinuous at (0,0) but partial derivatives exist at (0,0).
 - e. none of the above.

10.	Let $\mathcal{T} = \{\phi, \mathbb{R}\} \bigcup \{(x, \infty) \mid x \in \mathbb{R}\}$. Then in the topological space $(\mathbb{R}, \mathcal{T})$ the set of integers \mathbb{Z} is a. an open set. b. a closed set. c. a dense set. d. an uncountable set. e. none of the above.
11.	The number of homomorphisms from $C_2 \times C_2 \to C_2$ is $(C_n$ is the cyclic group of order n) a. 5 b. 4 c. 3 d. 2 e. 1
12.	The number of zero-divisors in the ring of integers modulo 24 is a. 20 b. 15 c. 12 d. 8 e. none of the above.
13.	If R is a unique factorization domain then a. R is a Euclidean domain. b. R is a principal ideal domain. c. $R[X]$ is a unique factorization domain. d. $R[X]$ is a principal ideal domain. e. none of the above.
14.	The number of proper subfields of F_{32} is a. 16 b. 8 c. 4 d. 2 e. 1.

9. If R is given the cofinite topology then
a. R is compact and connected.
b. R is connected but not compact.
c. R is compact but not connected.
d. R is neither compact nor connected.

e. \mathbb{R} has a countable base.

- 15. An example of a function on \mathbb{R} whose graph does not intersect the x-axis
 - a. $f(x) = x^3 3x + 2$
 - b. $f(x) = x^4 + x^2 + 1$

 - c. $f(x) = x^{-1}x^{-1}$ d. $f(x) = x^{1} \frac{x}{2} + 1$ e. none of the above.
- 16. I. Every Lebesgue measurable function on **R** is continuous.
 - II. Every Lebesgue measurable subset of \mathbb{R} is Borel.
 - III. The space of continuous functions on [a, b] is dense in $L^3([a, b])$.
 - a. I and II are true but III is false.
 - b. I and III are true but II is false.
 - c. Only II and III are true.
 - d. Only III is true.
 - e. None of the above.
- 17. The indicator function of the irrationals is
 - a. differentiable everywhere.
 - b. Riemann integrable.
 - c. differentiable nowhere.
 - d. differentiable only at 0.
 - e. none of the above.
- 18. For the function $f(z) = \frac{\sin z}{z^2}$ the point z = 0 is
 - a. an essential singularity.
 - b. a removable singularity.
 - c. a pole of order 2.
 - d. a pole of order 1.
 - e. none of the above.
- 19. The number of roots of $f(z) = z^5 + 5z^3 + z 2$ which lie inside the circle of radius 5/2 centred at the origin is
 - a. 0 b. 3 c. 5 d. 7 e. none of these.

- 20. The image of the unit circle under the map $f(z) = 1 + z^2$ is
 - a. again the same unit circle.
 - b. another circle with a different centre but the same radius.
 - c. another circle with the same centre but a different radius.
 - d. not a a circle.
 - e. none of the above.
- 21. If A and B are subsets of R, define the distance between them by $d(A,B) = \sup_{n \in \mathbb{R}} |\chi_A(n) - \chi_B(n)|$. $(\chi_A \text{ is the indicator function of } A)$ Then the metric space $(\mathcal{P}(\mathbb{R}), d)$ is
 - a. compact and connected.
 - b. compact and normal.
 - c. connected and normal.
 - d. second countable.
 - e. discrete.
- 22. In the complex Hilbert space $L^2([0,2\pi])$

 - a. the functions $\{e^{inx} \mid n \in \mathbb{Z}\}$ form an orthonormal basis. b. the functions $\{\frac{1}{\sqrt{2\pi}}e^{inx} \mid n \in \mathbb{Z}\}$ form an orthonormal basis.

 - c. the functions $\{e^{nx} \mid n \in \mathbb{Z}\}$ form an orthonormal basis. d. the functions $\{\frac{1}{\sqrt{2\pi}}e^{nx} \mid n \in \mathbb{Z}\}$ form an orthonormal basis.
 - e. none of the above.
- 23. The number of Sylow 2-subgroups in D_7 , the dihedral group of order 14,
 - a. 1 b. 2 c. 3 d. 5 e. 7.
- 24. If y_1 and y_2 are two solutions of $y'' + x^2y' + (1-x)y = 0$ on [-1, 1] such that $y_1(0) = 0$, $y_1'(0) = -1$, $y_2(0) = -1$ and $y_2'(0) = 1$ then
 - a. y_1, y_2 are linearly independent on [-1,1].
 - b. y_1, y_2 are linearly dependent on [-1,1].
 - c. y_1, y_2 are linearly dependent on [0,1].
 - d. y_1, y_2 are linearly dependent on [-1,0].
 - e. none of the above.

- 25. The ODE $x^2(1-x)^2y'' + (1-x)y' + x^2y = 0$ has
 - a. both x = 0 and x = 1 as regular singular points.
 - b. both x = 0 and x = 1 as irregular singular points.
 - c. x = 0 as a regular singular point and x = 1 as an irregular singular point.
 - d. x = 0 as an irregular singular point and x = 1 as a regular singular point.
 - e. none of the above.

Part - B

There are 15 questions in this part. Each question carries 5 marks. Answer as many as you can. The maximum you can score is 50 marks. Justify your answers. This part must be answered in a separate answer book provided.

- 1. Let $p: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ be the function defined by p(A) = minimal element of A. Show that
 - (a) $p(A \cup B) = \min(p(A), p(B))$ and (b) $p(A \cap B) \ge \min(p(A), p(B))$ if $A \cap B \ne \phi$.
- 2. Show that the function $f(x) = x + \sin x$ defines a homeomorphism from \mathbb{R} to \mathbb{R} .
- 3. What is the characteristic polynomial and minimal polynomial over $\mathbb Q$ of

the matrix
$$A = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
? Find a vector v such that $\{v, Av, A^2v, A^3v\}$

is a basis of \mathbb{R}^4 .

- 4. Let $n \geq 3$ be an odd integer and $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ the non-real nth roots of 1. Show that $(1 + \alpha_1^2)(1 + \alpha_2^2)...(1 + \alpha_{n-1}^2) = 1$.
- 5. In a commutative ring R with 1, for any subset I of R define $V(I) = \{P \mid P \text{ is a prime ideal containing } I\}$. Show that if I_1 and I_2 are two ideals of R then $V(I_1) \cup V(I_2) = V(I_1 \cap I_2)$.
- 6. Show from first principles that a group of order 65 must be cyclic.

- 7. Define absolute continuity. Give an example of a continuous function that is not absolutely continuous. Show why your example works.
- 8. For a real number p > 1 define the space l^p . Show that the dual space $(l^p)^*$ is isomorphic to l^q where $q = \frac{p}{p-1}$.
- 9. Determine the Galois group of $\mathbb{Q}(e^{\frac{2\pi i}{7}})$ over \mathbb{Q} .
- 10. Let V be a finite dimensional vector space, $V = V_1 + V_2$, where V_1 and V_2 are two subspaces of V. Let T be a linear transformation on V such that $T(V_1) \subseteq V_2$ and $T(V_2) \subseteq V_1$. Suppose that $T|_{V_1}$ and $T|_{V_2}$ are injective. Show that T is invertible. (Hint: consider T^2).
- 11. Investigate for solvability the integral equation

$$\phi(x) - \lambda \int_0^1 (2xt - 4x^2)\phi(t) dt = 1 - 2x$$

for different values of the parameter λ .

12. Find the extremals with corner point for the functional

$$J[y] = \int_0^2 (y')^2 (y'-1)^2 dx, \quad y(0) = 0, \quad y(2) = 1.$$

- 13. Construct the Green's function for the B.V.P. y'' = -f(x), y(0) = 0, y(1) + y'(1) = 2 and hence write its solution in terms of the Green's function.
- 14. Consider the non-linear p.d.e. pq = 1. Show that two initial strips are possible for the initial curve x = 2t, y = 2t, z = 5t. Find a solution of the equation containing the initial curve.
- 15. Show that the transformation Q = p + iaq, $P = \frac{p iaq}{2ia}$ is canonical and find a generating function.