16E(A)

MATHEMATICS Paper - II

MARCH 2008

Parts A and B

[Maximum Marks: 50 Time: 2½ Hours]

Instructions:

1. Answer the questions under Part-A on a separate answer book.
2. Write the answers to the questions under Part-B on the question paper itself and attach it to the answer book of Part-A.

PART - A

Time: 2 Hours
Marks: 35

(Marks: 5x2=10)

Note:

1. Answer ANY FIVE questions, choosing at least TWO from each of the following two groups i.e., \mathbf{A} and \mathbf{B}.
2. Each question carries 2 marks.

GROUP - A

(Geometry, Analytical Geometry, Statistics)

1. ABC is an obtuse angled triangle. $\angle B$ is obtuse angle, $\mathrm{AD} \perp \mathrm{CB}$, then show that $A C^{2}=A B^{2}+$ $B C^{2}+2 B C . B D$.
2. Find the point on X-axis which is equidistant from $(2,3)$ and $(4,-2)$.
3. Find the equation of the line passing through $(4,-3)$ and is perpendicular to the line $2 x-5 y+$ $4=0$.
4. The mean marks scored by 50 students is 80 . On verification of data, it was found that the marks of one student were shown as 73 instead of 37 . If corrected, find the new mean.

GROUP - B

(Trigonometry, Matrices, Computing)
5. Find the value of
$32 \cot ^{2} \frac{\pi}{4}-8 \sec ^{2} \frac{\pi}{3}+8 \cot ^{3} \frac{\pi}{6}$.
6. The angle of elevation of the top of a tree from a point 100 m . from the foot of the tree is 60°. Find the height of the tree.
7. What are the different boxes used in an Flow Chart?
8. What are the types of operations, a Computer performs?

SECTION - II
(Marks 4×1=4)

Note:

1. Answer ANY FOUR of the following SIX questions.
2. Each question carries 1 mark.
3. There is a circle of radius 3 cms . From a point ' P ' which is at a distance of 5 cms . From the centre of the circle, a tangent is drawn to the circle. Find the length of the tangent?
4. Find the slope of a line perpendicular to the line $5 x-2 y+4=0$.
5. $x=a \sin \theta, y \equiv a \cos \theta$. Eliminate ${ }^{\prime} \theta^{\prime}$.
6. If $\left[\begin{array}{cc}2 a & 5 \\ 6 & 3\end{array}\right]$ has no multiplicative inverse. Find a^{3} student's vision
7. Find the median of the observations
$1.8,4.0,2.7,1.2,4.5,2.3$ and 3.7
8. What are the essential components of a Computer?

SECTION - III

(Marks 4x4=16)

Note:

1. Answer ANY FOUR questions, choosing TWO from each of the following groups i.e., \mathbf{A} and \mathbf{B}.
2. Each question carries 4 marks.
GROUP - A
(Geometry, Analytical Geometry, Statistics)
3. State and prove alternate segment theorem.
4. Find the equation of the line passing through $(4,3)$ and making intercepts on the co-ordinate axes whose sum is -1 .
5. Two vertices of a triangle are $A(-4,4) ; B(6,12)$ and Centroid is $G(0,6)$. Find the co-ordinates of the third vertex ' C ' and show that area of $\triangle A B C=3$ [area of $\triangle A G B]$.
6. Find the mean of the following distribution by deviation method.

Class Interval	$0-9$	$10-19$	$20-29$	$30-39$	$40-49$
Frequency	8	15	20	45	12

GROUP - B
 (Trigonometry, Matrices and Computing)

19. If $\sec \theta+\tan \theta=p$, show that $\sin \theta=\frac{p^{2}-1}{p^{2}+1}$.
20. Solve the following linear systems using Cramer's method, if a solution exists for the system.
$7 x-2 y+5=0,11 x-6 y+25=0$.
21. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Prove that $A^{2}-(a+d) A=(b c-a d) I$.
22. Write and Algorithm and draw a Flow Chart to pick largest number of the three given numbers.

Note:

SECTION - IV
(Marks 1x5=5)

1. Answer ANY ONE question from the following. Every student's vision
2. It carries 5 marks.
3. Construct a cyclic quadrilateral $A B C D$, where $A B=5 \mathrm{~cm}$., $B C=6 \mathrm{~cm}$., $A C=4 \mathrm{~cm}$. and $A D=2 \mathrm{~cm}$. Write the construction.
4. An aeroplane at an altitude of 2500 m . observes the angles of depression of opposite points on the two banks of the river to be $41^{\circ} 20^{\prime}$ and $52^{\circ} 10^{\prime}$. Find the width of the river.
(Required Natural Tangents Table)

MinutesDegrees	$0 '$	$6{ }^{\prime}$	12'	18^{\prime}	24'	30'	Mean Differences				
							1'	2'	3'	4'	5'
41°	0.8693	0.8724	0.8754	0.8785	0.8816	0.8847	5	10	16	21	26
52°	1.2799	1.2846	1.2892	1.2938	1.2985	1.3032	8	16	24	31	39

PART - B

Time: 30 minutes
Marks: 15

Note:

1. Each question carries $1 / 2$ mark.
2. Answers are to be written in the question paper only.
3. All questions are to be answered.
4. Marks will not be given for over-written, re-written (or) erased answers.
I. Write the CAPITAL LETTERS of the correct answer in the brackets provided against each question.
5. If a parallelogram is cyclic, then it is
(A) Rhombus
(B) Rectangle
(C) Trapezium
(D) Square
6. If $\triangle A B C-\triangle P Q R$, then $\overline{A B} ; \overline{A C}=$
(A) PR:PQ
(B) $P Q: P R$
(c) $\mathrm{PQ}: \mathrm{PR} \mathrm{Si} \mathrm{O}$
(D) QR: PR
7. The slope of a straight line which is perpendiculartoe $5 x-v i 2 y+4=0$ is
(A) $\frac{2}{5}$
(B) $\frac{5}{2}$
(C) $-\frac{5}{2}$
(D) $-\frac{2}{5}$
8. Distance between the points $(a \cos \theta, 0)$ and $(0, a \sin \theta)$
(A) a
(B) \sqrt{a}
(C) a^{2}
(D) 0
9. The class interval of the frequency distribution having the classes 1-8, 9-16, 17-24 is
(A) 8
(B) 9
(C) 7
(D) 3
10. $A \cdot A^{-1}=$
(A) Null matrix
(B) Identity matrix
(C) A
(D) A^{-1}
11. A minute hand of a clock is 3 cm . long. How far its tip moves in 20 minutes?
(A) 3 cm .
(B) 9 cm .
(C) $\frac{22}{7} \mathrm{~cm}$.
(D) $\frac{44}{7} \mathrm{~cm}$.
12. If θ is eliminated from $x=\sec \theta+\tan \theta, y=\sec \theta-\tan \theta$, then
(A) $x^{2}-y^{2}=1$
(B) $x-y=1$
(C) $x+y=1$
(D) $x y=1$
13. If $A=\left[\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right]$, then $A^{-1}=$
(A) $-A$
(B) A^{2}
(C) A
(D) 2 A
14. A sexagesimal measure of 72° is equal in circular measure to
(A) $\frac{\pi}{5}$
(B) $\frac{2 \pi}{5}$
(C) π
(D) $\frac{2 \pi}{3}$

II. Fill in the blanks with suitable answers.

11. In a histogram, the breadths of rectangles represent the \qquad
12. The distance between the centres of two circles is ' d '. If the radii are ' r_{1} ' and ' r_{2} ', then the length of transverse common tangent is \qquad
13. The language known to computers is called
14. The line $2 x-3 y=K$ is passing through the origin, then the K is \qquad
15. The rhombus shaped box is used in a Flow Chart for \qquad
16. Value of $\sin 420^{\circ}$ is \qquad
17. If A.M. of $3,5,9, x, 11$ is 7 , then $x=$ \qquad
18. \qquad is used in Second Generation Computer.
19. Large amount of information is stored in \qquad unit of a computer.
20. $\cos 90-\theta=$ \qquad
III. For the following questions under Group-A, choose the correct answer from the master list Group-B and write the letter of the correct answer in the brackets provided against them.
(i) Group - A
[........] Group - B
(A) 45°
Every student's vision
[......... then $\operatorname{cosec} \theta-\cot \theta=$
21. $\sin \theta=\cos \theta$, then $\theta=$
[.........]
(C) $1 / 2$
22. $\sin 30^{\circ}=\cos A$, then $A=$
23. Two circles touch externally at ' O '. $A B$ is their direct common tangent, then $\angle A O B=$
(D) 0°
[..........]
(E) 6
(F) $1 / 3$
(G) 2^{2}
(H) 90°
(ii) Group - A
24. Number of common tangents that can be drawn to two circles touching externally
25. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is an example of
26. $\mathrm{P}=\left(\begin{array}{ll}x & y \\ z & a\end{array}\right), \mathrm{Q}=\left(\begin{array}{ll}b & c \\ d & 2\end{array}\right)$ and $\mathrm{P}=\mathrm{Q}$ then $\mathrm{a}=$?

Group - B

[.........] (I) 2
[.........]
(J) 3×4
[.........] (K) 3
29. $A \times\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)$,
[.........] (L) 1×2 then the order of A is
30. Mode of data 2, 3, 3, 2, 3, 1, P is P, [.........] (M) 1 then P is
(N) Unit matrix
(O) 5
(P) Singular matrix

