S.E. (Electrical Setwork Analysis & Synthess 10/06/07.

(REVISED COURSE)

ND-9464

(3 Hours)

[Total Marks: 100

Liestion No. 1 is compulsory.

2339-07.

to the

gonal

onto

3).

nsform

f(t) dt.

(z) l².

s:ble—

empt any four out of the remaining six questions.

- ssume suitable data if required.

Figures to the right indicate full marks.

enalthe following questions:

20

Find V_{BC} using Nodal Analysis.

Following is tree of graph. Draw the complete oriented graph and draw one appropriate electrical network for it.

Find Thevenin's equivalent circuit of following network across A – B.

in the following network, the initial current is zero. Find the source current after closing the switch.

[TURN OVER

2339

2. (a) Find i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ and $\frac{d^3i}{dt^3}$ at t=0+ in the following network when the switch is change from position 1 to position 2 at t=0. Steady state condition is reached before switching.

(b) Calculate the current through 2 Ω resistance using Source Transformation.

3. (a) Find the transmission parameters for the network shown :-

(b) Synthesise the following function in Foster-I and Foster-II form.

$$Z(s) = \frac{\frac{16}{3} \left(s^2 + 4s + 3\right)}{\left(s^2 + 2s\right)} .$$

4. (a) Determine the R for maximum power transferred. Hence determine P_{max} .

: s cham

- For the network shown below, find
 - (i) Incidence matrix
 - (ii) Cut-set matrix
 - (iii) Tie-set matrix.

- 3) Switch S is open for a long time and closes at t=0, find
 - (i) Initial value of current i
 - (ii) i(t) for $t \ge 0$.

Using superposition theorem, find $V_{\rm x}$ —

Check following function for positive real function —

$$F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}.$$

10

10

8

10

Con. 2339-ND-9464-07.

(b) Determine Y-parameters for n/w shown below :--

- (c) Realise $Y(s) = \frac{s^4 + 6 s^2 + 4}{2 s^3 + 4 s}$ in Cauer-II form.
- Attempt the following questions:-
 - (a) Explain the principle of duality. Explain it's procedure to find the dual network with suitable example.
 - (b) Explain in detail the properties of positive real functions.
 - (c) Prove the condition for Reciprocity and Symmetry.