## PAPER - II

## MATHEMATICS

1. If $\log x: \log y: \log z=-z ;-x)-y$, then
(a) $x^{y} \cdot y^{z} \cdot z^{x}=1$
(b) $x^{x} y^{y} z^{z}=1$
(c) $\sqrt[x]{x} \sqrt[y]{y} \sqrt[z]{z}=1$
(d) none of these
2. The value of $\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}$ is
(a) $e^{2}$
(b) $e$
(c) $e^{-1}$
(d) none of these
3. If $f<\frac{2-(56-7 x}{<x+32)^{7 / 5}-2} \neq 0$, then for $f$ to be continuous everywhere $f$ is equal to
(a) -1
(b) 1
(c) $2^{4}$
(d) none of these
4. If $y=x^{y}$, then $\frac{d y}{d x}$ is equal to
(a) $\frac{y^{2}}{x+\log y_{-}}$
(b) $\frac{y^{2}}{x-\log y}$
(c) $\frac{y}{x^{2}(+\log y}$
(d) $\frac{y}{x^{2}(-\log y}$
5. The points on the curve $y^{2}=4 a\left(x+a \sin \frac{x}{a}\right)$ at which the tangent is parallel to $x$-axis, lie on
(a) a straight line
(b) a parabola
(c) a circle
(d) an ellipse
6. $\int \frac{d x}{1-\cos x-\sin x}$ is equal to
(a) $\log \left|1+\cot \frac{x}{2}\right|+c$
(b) $\log \left|1-\tan \frac{x}{2}\right|+c$
(c) $\log \left|1-\cot \frac{x}{2}\right|+c$
(d) $\log \left|1+\tan \frac{x}{2}\right|+c$
7. $\int \operatorname{cosec}^{4} x d x$ is equal to
(a) $\cot x+\frac{\cot ^{3} x}{3}+c$
(b) $\tan x+\frac{\tan ^{3} x}{3}+c$
(c) $-\cot x-\frac{\cot ^{3} x}{3}+c$
(d) $-\tan x-\frac{\tan ^{3} x}{3}+c$
8. $\int_{0}^{\pi^{2} / 4} \frac{\sin \sqrt{x}}{\sqrt{x}} d x$ is equal to
(a) 2
(b) 1
(c) $\frac{\pi}{4}$
(d) $\frac{\pi^{2}}{8}$
9. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{1 / 3}+x^{1 / 4}=0$ are respectively
(a) 2, 3
(b) 3,3
(c) 2, 6
(d) 2, 4
10. The smallest positive value of $x$ and $y$, satisfying $x-y=\frac{\pi}{4}$ and $\cot x+\cot y=2$, are
(a) $x=\frac{\pi}{6}, y=\frac{5 \pi}{2}$
(b) $x=\frac{5 \pi}{12}, y=\frac{\pi}{6}$
(c) $x=\frac{\pi}{3}, y=\frac{7 \pi}{12}$
(d) none of these
11. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$, then $1-x y-y z-z x$ is equal to
(a) 1
(b) 0
(c) -1
(d) 2
12. A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular and two on the other side. Then number of ways can they be seated is
(a) ${ }^{8} P_{4}{ }^{8} P_{2} 10$ !
(b) ${ }^{8} C_{4}{ }^{8} C_{2} 10!$
(c) ${ }^{8} P_{4}{ }^{8} P_{2} 10$
(d) none of these
13. In a class of 10 students there are 3 girls $A, B, C$. The number of different ways can they be arranged in a row such that no two of the three girls are consecutive is
(a)
(367!
(b) $\$ 36,10$ !
(c) $\$ 36,8$ !
(d) none of these
14. If the sum of the coefficient in the expansion of
$4^{2}+b^{7}$ is 4096 , then the greatest coefficient in the expansion is
(a) 924
(b) 792
(c) 1594
(d) none of these
15. If $R=\left(\sqrt{6}+14^{2_{n+1}}\right.$ and $f=R-[R]$, where [.] denotes the greatest integer function, then $R f$ is equal to
(a) $20^{n}$
(b) $20^{2 n}$
(c) $20^{2 n+1}$
(d) none of these
16. The image of the point $(3,8)$ in the line $x+3 y=7$ is
(a) $(1,4)$
(b) $(4,1)$
(c) $(-1,-4)$
(d) $(-4,-1)$
17. If the chord of contact of tangents from a point $P \int_{1}, y_{1}$, to the circle $x^{2}+y^{2}=a^{2}$ touches the circle $-a^{2}+y^{2}=a^{2}$, then the locus of $\mathbb{4}_{1}, y_{1}{ }^{-}$is
(a) a circle
(b) a parabola
(c) an ellipse
(d) a hyperbola
18. The locus of the mid-points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola is
(a) $y^{2}-2 a x+8 a^{2}=0$
(b) $y^{2}+2 a x+8 a^{2}=0$
(c) $y^{2}-2 a x-8 a^{2}=0$
(d) none of these
19. The equation $16 x^{2}-3 y^{2}-32 x+12 y-44=0$ represents a hyperbola, then
(a) the length of transverse axis is $4 \sqrt{3}$
(b) the length of conjugate axis is 4
(c) centre is $(-1,2)$
(d) eccentricity is $\sqrt{\frac{19}{3}}$
20. The sum of the eccentric angles of the feet of the normals drawn from any point to an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(a) $\pi$
(b) $2 n \pi$
(c) $n+1 \frac{-\pi}{2}$
(d) $n+1 \pi$
21. Let $p=1+a+a^{2}+\ldots \ldots .,|a|<1$

$$
q=1+b+b^{2}+\ldots \ldots .,|b|<1, \text { then } 1+a b+a^{2} b^{2}+\ldots . . \text { is equal to }
$$

(a) $\frac{p q}{p+q-1}$
(b) $\frac{p q}{p+q}$
(c) $\frac{p q}{p+q+p q}$
(d) none of these
22. If $f$ is a polynomial function such that $f$ and of opposite signs, then between $a$ and $b$ the equation $f=0$ has
(a) at least one root
(b) only one real root
(c) even number of real roots
(d) all its roots
23. The equation $\frac{A^{2}}{x-a}+\frac{B^{2}}{x-b}+\frac{C^{2}}{x-c}+\ldots \ldots .+\frac{H^{2}}{x-h}=k$ has
(a) no real root
(b) at most one real root
(c) no complex root
(d) at most two complex roots
24. The largest set of real values of $x$ for which $f=\sqrt{(+2)-x}-\frac{1}{\sqrt{x^{2}-4}}$ is a real function, is
(a) $[1,2] \cup(2,5]$
(b) $(2,5]$
(c) $[3,4]$
(d) none of these
25. For a $3 \times 3$ matrix $A$, if $|A|=4$, then $|\operatorname{adj} A|$ is equal to
(a) -4
(b) 4
(c) 16
(d) 64
26. There are ten pairs of shoes in a cupboard, out of which 4 shoes are picked out one by one randomly, then the probability that there is at least one pair is
(a) $\frac{224}{323}$
(b) $\frac{99}{323}$
(c) $\frac{204}{323}$
(d) none of these
27. ( $\cdot \vec{i} \vec{i}+\vec{j} \cdot \vec{j}+\boldsymbol{i} \cdot \vec{k} \vec{k}$ is equal to
(a) $\vec{i}+\vec{j}+\vec{k}$
(b) $\vec{a}$
(c) $3 \vec{a}$
(d) none of these
28. The plane $x=0$ divides the join of $(-2,3,4)$ and $(1,-2,3)$ in the ratio
(a) $2: 1$
(b) $1: 2$
(c) $3: 2$
(d) $-4: 3$
29. The equation of straight line passing through the point of intersection of $a x+b y+c=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime}=0$ parallel to the $y$-axis is
(a) $x$ (c) $b^{\prime}-a^{\prime} b+\left(b^{\prime}-c^{\prime} b^{`}=0\right.$
(b) $x$ (d $\left.b^{\prime}+a^{\prime} b\right\rceil\left(b^{\prime}+c^{\prime} b\right\rangle=0$
(c) $y 4^{\prime} b-a b^{\prime}+\mathbf{4}^{\prime} c-a c^{\prime}=0$
(d) none of these
30. The arithmetic mean of $n$ observations is $\bar{X}$. If the first observation is increased by 1 , second by 2 and so on, then new arithmetic mean is
(a) $\bar{X}+n$
(b) $\bar{X}+\frac{1}{2} n$
(c) $\bar{X}+\frac{1}{2} \mathbf{6}_{-}^{-}$
(d) $\bar{X}+\frac{1}{2} \mathbf{4}_{-}^{-}$
31. At time $t$, the distance $x \mathrm{~cm}$ of a particle moving in a horizontal line is given by $x=4 t^{2}+2 t$. The acceleration at $t=0.5 \mathrm{~s}$, is
(a) $8 \mathrm{~cm} / \mathrm{s}^{2}$
(b) $6 \mathrm{~cm} / \mathrm{s}^{2}$
(c) $3 \mathrm{~cm} / \mathrm{s}^{2}$
(d) $2 \mathrm{~cm} / \mathrm{s}^{2}$
32. A relation $R$ is defined on the set $N$ of natural numbers as follows: $x R y$ if and only if $x^{2}+y^{2}=25$. Then
(a) $R=\{(3,4),(4,4)\}$
(b) $R^{-1}=\{(3,4),(4,3)\}$
(c) $R=\{(0,5),(3,4),(4,3),(5,0)\}$
(d) none of these
33. If the real valued function $f(x)=\frac{a^{x}-1}{x^{n}\left(a^{x}+1\right)}$ is even, then $n$ equals
(a) 2
(b) $2 / 3$
(c) $1 / 4$
(d) $-1 / 3$
34. If $z_{1}=1+2 i, z_{2}=2+3 i, z_{3}=3+4 i$, then $z_{1}, z_{2}$ and $z_{3}$ represent
(a) equilateral triangle
(b) right angled triangle
(c) isosceles triangle
(d) none of these
35. If $x+1$ is a factor of $x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-9) x+6$, then the value of $p$ is
(a) -4
(b) 0
(c) 4
(d) 2
36. For all positive values of $x$ and $y$, the value of $\frac{\left(1+x+x^{2}\right)\left(1+y+y^{2}\right)}{x y}$ is
(a) $<9$
(b) $\leq 9$
(c) $>9$
(d) $\geq 9$
37. The real roots of the equation $7^{\log _{7}\left(x^{2}-4 x+5\right)}=x-1$ are
(a) 1 and 2
(b) 2 and 3
(c) 3 and 4
(d) 4 and 5
38. In an isosceles triangle $A B C$, the coordinates of the points $B$ and $C$ on the base $B C$ are respectively $(2,1)$ and $(1,2)$. If the equation of the line $A B$ is $y=\frac{1}{2} x$, then the equation of the line $A C$ is
(a) $2 y=x+3$
(b) $y=2 x$
(c) $y=\frac{1}{2}(x-1)$
(d) $y=x-1$
39. Let $P Q$ and $R S$ be tangents at the extremities of diameter $P R$ of a circle of radius $r$. If $P S$ and $R Q$ intersect at a point $X$ on the circumference of the circle, then $2 r$ equals
(a) $\sqrt{P Q \cdot R S}$
(b) $\frac{P Q+R S}{2}$
(c) $\frac{2 P Q+R S}{P Q+R S}$
(d) $\frac{\sqrt{P Q^{2}+R S^{2}}}{2}$
40. The angle between lines joining the origin to the points of intersection of the line $\sqrt{3} x+y=2$ and the curve $y^{2}-x^{2}=4$ is
(a) $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
(b) $\frac{\pi}{6}$
(c) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(d) $\frac{\pi}{2}$
41. The Boolean expression $a b c+a^{\prime}+b^{\prime}+c^{\prime}$ simples to
(a) 0
(b) 1
(c) $a b c$
(d) $a b+a c+b c$
42. If $f(x), g(x)$ be differentiable functions and $f(1)=g(1)=2$, then $\lim _{x \rightarrow 1}\left(\frac{f(1) g(x)-f(x) g(1)-f(1)+g(1)}{g(x)-f(x)}\right)$ is equal to
(a) 0
(b) 1
(c) 2
(d) none of these
43. Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is tossed 3 times. The probability that yellow, red and blue faces appear in the first, second and third tosses respectively is
(a) $\frac{1}{36}$
(b) $\frac{1}{6}$
(c) $\frac{1}{30}$
(d) none of these
44. Let $f(x)=\int \frac{x^{2} d x}{\left(1+x^{2}\right)\left(1+\sqrt{1+x^{2}}\right)}$ and $f(0)=0$. Then $f(1)$ is
(a) $\log (1+\sqrt{2})$
(b) $\log (1+\sqrt{2})-\frac{\pi}{4}$
(c) $\log (1+\sqrt{2})+\frac{\pi}{4}$
(d) none of these
45. The A.M. and variance of 10 observation are 10 and 4 respectively. Later it is observed that one observation was incorrectly read as 8 instead of 18 . Then, the correct value of mean and variance are
(a) 20,9
(b) 20,14
(c) 11,9
(d) 11,5
46. If $\vec{p}, \vec{q}$ are two non-collinear and nonzero vectors such that $(b-c) \vec{p} \times \vec{q}+(c-a) \vec{p}+(a-b) \vec{q}=0$, where $a, b, c$ are the lengths of the sides of a triangle, then the triangle is
(a) right angled
(b) obtuse angled
(c) equilateral
(d) isosceles
47. Let $f^{\prime \prime}(x)>0 \forall x \in \boldsymbol{R}$ and $g(x)=f(2-x)+f(4+x)$. Then $g(x)$ is increasing in
(a) $(-\infty,-1)$
(b) $(-\infty, 0)$
(c) $(-1, \infty)$
(d) none of these
48. In $[0,1]$, Lagrange's Mean value theorem is not applicable to
(a) $f(x)=\left\{\begin{array}{cc}\frac{1}{2}-x, & x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2}, & x \geq \frac{1}{2}\end{array}\right.$
(b) $f(x)=\left\{\begin{array}{cc}\frac{\sin x}{x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(c) $f(x)=x|x|$
(d) $f(x)=|x|$
49. The co-ordinate of the point for minimum value of $z=7 x-8 y$, subject to the conditions $x+y-20 \leq 0, y \geq 5, x \geq 0, y \geq 0$ is
(a) $(20,0)$
(b) $(15,5)$
(c) $(0,5)$
(d) $(0,20)$
50. At $x=\frac{5 \pi}{6}, 2 \sin 3 x+3 \cos 3 x$ has
(a) maximum value
(b) minimum value
(c) zero value
(d) none of these
51. In triangle $A B C$ if $3 a=b+c$, then $\cot \frac{B}{2} \cot \frac{C}{2}$ is equal to
(a) $\sqrt{3}$
(b) 1
(c) 2
(d) 3
52. If $f=\cos \log x$, then $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left(f\left(\frac{x}{y}\right)+f y\right)$ is equal to
(a) $\cos \left(-y_{-}^{-}\right.$
(b) $\log [\cos (x-y)]$
(c) 1
(d) 0
53. $\int_{0}^{\pi / 2} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x$ is equal to
(a) 2
(b) $\pi$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$
54. The area bounded by the parabola $y^{2}=8 x$ and the latus rectum is
(a) $\frac{16}{3}$
(b) $\frac{23}{3}$
(c) $\frac{32}{3}$
(d) $\frac{16 \sqrt{2}}{3}$
55. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then $\cos \theta-\sin \theta$ is equal to
(a) $\sqrt{2} \sin \theta$
(b) $2 \sin \theta$
(c) $-\sqrt{2} \sin \theta$
(d) none of these
56. The straight lines $a x+5 y=7$ and $4 x+b y=5$ intersect at the point $\mathbb{Q},-1$, The first meets the axis of $x$ in $A$ and the $2^{\text {nd }}$ meets the axis of $y$ in $B$, then the length of $A B$ is
(a) $\frac{10 \sqrt{7}}{6}$
(b) $\frac{13}{6}$
(c) $\frac{\sqrt{149}}{6}$
(d) $\frac{\sqrt{99}}{6}$
57. If $\left|\begin{array}{lll}x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3}\end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$, then $n$ equals
(a) 1
(b) -1
(c) 2
(d) -2
58. The slope of a chord of the parabola $y^{2}=4 a x$ which is normal at one end and which subtends a right angle at the origin is
(a) $\frac{1}{\sqrt{2}}$
(b) $\sqrt{2}$
(c) 2
(d) none of these
59. Equation of plane which contains the line $\frac{x-1}{1}=\frac{y-2}{3}=\frac{z-3}{2}$ and which is perpendicular to the plane $2 x+7 y+5 z=2$ is
(a) $x+y+z=6$
(b) $-x+y+z=2$
(c) $2 x-y+z=3$
(d) $x-y+z=2$
60. If $|z|<\sqrt{2}-1$, then $\left|z^{2}+2 z \cos \alpha\right|$ is
(a) less than 1
(b) $\sqrt{2}-1)^{2}$
(c) $\sqrt{2}-1$
(d) none of these
61. Coefficient of $x^{n}$ in expression of $e^{e^{x}}$
(a) $e^{x^{2} / 2}$
(c) $\frac{1}{\lfloor n}\left\{1+\frac{2^{n}}{\boxed{ } 2}+\frac{3^{n}}{\lfloor 3}+\ldots .\right.$. upto $\left.\infty\right\}$
(b) $\log (1+2 x)$
(d) $\frac{1}{\lfloor n}\left\{1-\frac{2^{n}}{\lfloor 2}+\frac{3^{n}}{\lfloor 3}-\frac{4^{n}}{\lfloor 4}+\ldots .\right.$. upto $\left.\infty\right\}$
62. For $0 \leq x<1$, which is correct
(a) $\log (1+x)<x$
(b) $\log (1+x) \leq x$
(c) $\log (1+x)>x$
(d) $\log (1+x) \leq x$
63. Which one is correct for $n \in N$
(a) $|\sin n x| \geq n|\sin x|$
(b) $|\sin n x| \leq n|\sin x|$
(c) $|\sin n x|>\frac{3}{2} n|\sin x|$
(d) none of these
64. The integral part of $(8+3 \sqrt{7})^{n}$ is
(a) an even integer
(b) an odd integer
(c) an integer of type $4 n+1, n \geq 1$
(d) an integer of type $4 n-1, n \leq 1$
65. Let $P(n)$ is any statement for $n \in N$ such that $P(k)$ is true where $(k \in N) \geq 1$ and $P(n) \Rightarrow P(n+1)$ for all natural numbers, then $P(n)$ is said to be true
(a) $\forall n \in N$
(b) $\forall(n \geq k) \in N$
(c) for some $n \in N$
(d) nothing can be said
66. A particle is projected with velocity $u$ at an angle $\alpha$ with the horizontal. It will be moving at right angles to this direction after a time
(a) $\frac{g}{u} \operatorname{cosec} \alpha$
(b) $\frac{u}{g} \operatorname{cosec} \alpha$
(c) $\frac{u}{g} \cos \alpha$
(d) none of these
67. A man on a lift ascending with an acceleration $f \mathrm{~m} / \mathrm{sec}^{2}$ throws a ball vertically upwards with a velocity of $v \mathrm{~m} / \mathrm{sec}$ relatively to the lift and catches it again in $t$ seconds, then
(a) $f+g=\frac{2 v}{t}$
(b) $f+g=\frac{v}{2 t}$
(c) $f+g=\frac{t}{2 v}$
(d) none of these
68. $A B C D$ is a rectangle in which $A B=D C=a$ and $A D=B C=b$. Forces each of magnitude $Q$ act along $A D$ and $C B$ and forces each of magnitude $P$ act along $A B$ and $C D$. The perpendicular distance between the resultant of $P$ and $Q$ at $A$ and that of $P$ and $Q$ at $C$ is
(a) $\frac{Q b-P a}{\sqrt{P^{2}+Q^{2}}}$
(b) $\frac{P a-Q b}{\sqrt{P^{2}+Q^{2}}}$
(c) $\frac{|Q b-P a|}{\sqrt{P^{2}+Q^{2}}}$
(d) none of these
69. The resultant of two forces $P$ and $Q$ is $R$. If $Q$ is doubled, $R$ is doubled and if $Q$ is reversed, $R$ is again doubled. If the ratio $p^{2}: Q^{2}: R^{2}=2: 3: x$ then $x$ is equal to
(a) 5
(b) 2
(c) 3
(d) 4
70. $\quad$ Two forces $P$ and $Q$ have a resultant $R$ and the resolved part of $R$ in the direction of $P$ is of magnitude $Q$. The angle between the forces is
(a) $2 \sin ^{-1}\left(\frac{P}{2 Q}\right)^{1 / 2}$
(b) $2 \sin ^{-1}\left(\frac{Q}{2 P}\right)^{1 / 2}$
(c) $2 \sin ^{-1}\left(\frac{2 P}{2 Q}\right)$
(d) none of these
71. Three forces $P, Q$ and $R$ act along the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$ taken in order. If the resultant of these forces passes through the circumcentre of the triangle, then
(a) $P+Q+R=0$
(b) $P \cos A+Q \cos B+R \cos C=0$
(c) $P \sec A+Q \sec B+R \sec C=0$
(d) none of these
72. Vector projection of vector $\vec{a}$ on another vector $\vec{b}$ is
(a) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
(b) $(\vec{a} \cdot \vec{b}) \hat{b}$
(c) $(\vec{a} \cdot \vec{b}) \vec{b}$
(d) $\frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|} \hat{b}$
73. If $|\vec{a}|=2,|\vec{b}|=3$ and $|\vec{c}|=4$, then $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}-\vec{a}]$ is equal to
(a) 24
(b) -24
(c) 0
(d) 48
74. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3|\vec{b}|=5$ and $|\vec{c}|=7$, then the angle $\theta$ between $\vec{a}$ and $\vec{b}$ is
(a) $90^{\circ}$
(b) $45^{\circ}$
(c) $60^{\circ}$
(d) $120^{\circ}$
75. If $\hat{a}$ is a unit vector, then $|\hat{a} \times \hat{i}|^{2}+|\hat{a} \times \hat{j}|^{2}+|\hat{a} \times \hat{k}|^{2}$ is equal to
(a) 1
(b) 2
(c) 0
(d) none of these
76. Sum of the roots of the equation $x^{2}+|x|-6=0$ is
(a) 0
(b) -1
(c) 5
(d) none of these.
77. If the roots of the equation $2 x^{2}-\left(a^{3}+1\right) x+\left(a^{2}-2 a\right)=0$ are of opposite signs, then the set of possible value of $a$ is
(a) $(0,2)$
(b) $[0,2]$
(c) $(0,2]$
(d) $[0,2)$
78. If the equations $a x^{2}+2 c x+b=0$ and $a x^{2}+2 b x+c=0 \quad(b \neq c)$ have a common root, then $a+4 b+4 c=$
(a) 0
(b) 2
(c) -2
(d) 1
79. The equation $x^{\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}}=\sqrt{2}$ has
(a) atleast one real solution
(b) exactly three real solutions
(c) exactly one real solution
(d) complex roots
80. If $x \in R$, then the maximum and minimum values of $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$ are
(a) 3,1
(b) $0,-\infty$
(c) $4,-5$
(d) $\infty,-\infty$
81. If $a, b, c \in R$ and the equation $a x^{2}+b x+c=0, a \neq 0$, has real roots $\alpha$ and $\beta$ satisfying $\alpha<-1$ and $\beta>1$, then $1+\frac{c}{a}+\left|\frac{b}{a}\right|$ is
(a) positive
(b) negative
(c) zero
(d) none of these
82. The number of all four digital numbers that can be formed by using the digits $1,2,3,4$ and 4 and which are divisible by 4 is
(a) 125
(b) 120
(c) 95
(d) 30
83. The number of arrangements of the letters of the word 'BANANA' in which two $N$ 's donot appear adjacently is
(a) 40
(b) 60
(c) 80
(d) 100
84. The sum $\sum_{i=0}^{m}\binom{10}{i}\binom{20}{m-i},\left(\right.$ where $\binom{p}{q}=0$ if $\left.p<q\right)$ is maximum when $m$ is
(a) 5
(b) 15
(c) 10
(d) 20
85. Number of divisors of $n=38808$ (except 1 and $n$ ) is
(a) 70
(b) 68
(c) 72
(d) 74
86. The digit in the units place of the number $1!+2!+\ldots+99!$ is
(a) 2
(b) 3
(c) 4
(d) 5
87. Fifteen coupons are numbered 1 to 15 . Seven coupons are selected at random, one at a time with replacement. The probability that the largest number appearing on a selected coupon be not more than 9 , is
(a) $\left(\frac{9}{16}\right)^{6}$
(b) $\left(\frac{8}{15}\right)^{7}$
(c) $\left(\frac{3}{5}\right)^{7}$
(d) none of these
88. The letters of the word "MALEN KOV' are arranged in all possible ways. The chance that there are exactly four letters between $M$ and $E$ is
(a) $\frac{3}{28}$
(b) $\frac{3}{14}$
(c) $\frac{1}{14}$
(d) none of these.
89. Either of the two persons throw a pair of dice once. The chance that their throws are identical is
(a) $\frac{73}{648}$
(b) $\frac{1}{216}$
(c) $\frac{575}{648}$
(d) none of these
90. Dialing a telephone number, an old person forgets last three digits. Remembering only that these digits are different, he dialed at random. The chance that the number dialed is correct is
(a) $\frac{1}{1000}$
(b) $\frac{1}{720}$
(c) $\frac{1}{120}$
(d) none of these
91. If the probability that a man aged $x$ years will die within a year be $p$, then the chance that out of 5 men $A, B, C, D$ and $E$, each aged $x$ years; $A$ will die during the year and be the first to die is
(a) $\frac{1}{5} p(1-p)^{4}$
(b) $\frac{1}{5}\left(1-(1-p)^{5}\right)$
(c) $5\left(1-(1-p)^{5}\right)$
(d) none of these
92. Five unbiased coins are tossed simultaneously. If the probability of getting atmost $n$ heads is 0.5 , the value of $n$ is
(a) 1
(b) 3
(c) 2
(d) 4
93. A box contains 50 tickets numbered $1,2,3, \ldots, 50$ of which five are drawn at random and arranged in ascending order of magnitude $\left(x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)$. The probability that $x_{3}=30$ is
(a) $\frac{{ }^{20} C_{2}{ }^{29} C_{2}}{{ }^{50} C_{5}}$
(b) $\frac{{ }^{20} C_{2}}{{ }^{50} C_{5}}$
(c) $\frac{{ }^{29} C_{2}}{{ }^{50} C_{5}}$
(d) none of these
94. Let the three-digit numbers $A 28,3 B 9,62 C$, where $A, B$ and $C$ are integers between 0 and 9 be divisible by a fixed integer $k$. Then determinant $\left|\begin{array}{lll}A & 3 & 6 \\ 8 & 9 & C \\ 2 & B & 2\end{array}\right|$ is divisible by.
(a) $k$
(b) $2 k$
(c) $3 k$
(d) $4 k$
95. Let $\alpha$ be a repeated root of the quadratic equation $f(x)=0$ and $A(x), B(x), C(x)$ be polynomials of degree 3, 4 and 5 respectively, then show that $\left|\begin{array}{ccc}A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A^{\prime}(\alpha) & B^{\prime}(\alpha) & C^{\prime}(\alpha)\end{array}\right|$ is divisible by
(a) $f(-x)$
(b) $f(x)$
(c) $f(2 x)$
(d) $f^{\prime}(x)$
96. If $f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & x(x+1) \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|$ then $f(100)$ is equal to
(a) 0
(b) 1
(c) 100
(d) -100
97. If $a b c \neq 0$, then $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$ is equal to
(a) $1+a+b+c$
(b) $1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
(c) $a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
(d) none of these
98. If $A$ and $B$ are symmetric matrices of the same order, then
(a) $A B$ is a symmetric matrix
(b) $A-B$ is a skew-symmetric matrix
(c) $A B+B A$ is a symmetric matrix
(d) $A B-B A$ is a symmetric matrix
99. If $A$ and $B$ are any $2 \times 2$ matrices, then $\operatorname{det}(A+B)=0$ implies
(a) $\operatorname{det} A+\operatorname{det} B=0$
(b) $\operatorname{det} A=0$ or $\operatorname{det} B=0$
(c) $\operatorname{det} A=0$ and $\operatorname{det} B=0$
(d) none of these
100. If $a>0$ and discriminant of $a x^{2}+2 b x+c$ is negative, then $\left|\begin{array}{ccc}a & b & a x+b \\ b & c & b x+c \\ a x+b & b x+c & 0\end{array}\right|=0$
(a) $+v e$
(b) $-v e$
(c) 0
(d) $(a c-b)^{2}\left(a x^{2}+2 b x+c\right)$

