## PAPER - II <br> MATHEMATICS

1. A class has 175 students. The following data shows the number of students opting one or more subjects. Maths 100, Physics 70, Chemistry 78, Maths and Physics 30, Maths and Chemistry 38, Physics and Chemistry 23, Maths, Physics and Chemistry 18. How many have opted for Maths alone?
(a) 35
(b) 48
(c) 50
(d) 22
2. The void relation on a set $A$ is
(a) reflexive
(b) symmetric and transitive
(c) reflexive and transitive
(d) reflexive and symmetric
3. If $e^{f(x)}=\frac{10+x}{10-x}, x \in(-10,10)$ and $f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$, then $k=$
(a) 0.5
(b) 0.6
(c) 0.7
(d) 0.8
4. On the set of integers $Z$, define $f: Z \rightarrow Z$ as follows $f(x)=\left\{\begin{array}{ll}\frac{x}{2} & \text { if } x \text { is even } \\ 0 & \text { if } x \text { is odd }\end{array}\right.$, than $f$ is
(a) onto but not one-one
(b) one-one and onto
(c) one-one but not onto
(d) into
5. If $z$ is a complex number such that $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$, then $z$ is equal to
(a) $-2 \sqrt{3}+2 i$
(b) $2 \sqrt{3}+2 i$
(c) $2 \sqrt{3}-2 i$
(d) $-\sqrt{3}+i$
6. If $|z+\bar{z}|=|z-\bar{z}|$, then the locus of $z$ is a
(a) pair of straight lines
(b) rectangular hyperbola
(c) straight line
(d) set of four straight line
7. If $x, a, b, c$ are real and $(x-a+b)^{2}+(x-b+c)^{2}=0$, then $a, b, c$ are in
(a) H.P.
(b) G.P.
(c) A.P.
(d) none of these
8. The conditions that the equation $a x^{2}+b x+c=0$ has both roots positive is that
(a) $a, b$ and $c$ are of same sign and $D>0$
(b) $a$ and $b$ are of same sign and $D>0$
(c) $b$ and $c$ have the same sign opposite to that of $a$ and $D>0$
(d) $a$ and $c$ have the same sign opposite to that of $b$ and $D>0$
9. Solution of $|x-1| \geq|x-3|$ is
(a) $x \leq 2$
(b) $x \geq 2$
(c) $[1,3]$
(d) none of these
10. If $1, \log _{9}\left(3^{1-x}+2\right), \log _{3}\left(4 \cdot 3^{x}-1\right)$ are in A.P., then $x$ equals
(a) $\log _{3} 4$
(b) $1-\log _{4} 3$
(c) $1-\log _{3} 4$
(d) $\log _{4} 3$
11. The sum of all 2 digit odd numbers is
(a) 2475
(b) 2530
(c) 4905
(d) 5049
12. Maximum value of $\sin ^{4} \theta+\cos ^{6} \theta$ is
(a) $\frac{3}{4}$
(b) 1
(c) $\frac{1}{2}$
(d) none of these
13. If $3 \sin x+4 \cos x=5$ then $4 \sin x-3 \cos x$ is equal to
(a) 0
(b) 1
(c) 5
(d) none of these
14. The most general value of $\theta$ which satisfies $\sin \theta=\frac{1}{2}$, $\tan \theta=\frac{1}{\sqrt{3}}$ is
(a) $2 n \pi+\frac{\pi}{6}$
(b) $2 n \pi+\frac{\pi}{4}$
(c) $2 n \pi+\frac{\pi}{3}$
(d) $2 n \pi+\frac{\pi}{2}$
15. If $b+c=3 a$, then the value of $\cot \frac{B}{2} \cot \frac{C}{2}$ is equal to
(a) 1
(b) 2
(c) $\sqrt{3}$
(d) $\sqrt{2}$
16. A man standing on a horizontal plane observes the angle of elevation of the top of a tower to be $\alpha$. After walking a distance equal to double the height of the tower, towards the tower, the angle of elevation becomes $2 \alpha$, than $\alpha$ is
(a) $\frac{\pi}{18}$
(b) $\frac{\pi}{12}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{2}$
17. The equation $\sin ^{-1} x=2 \sin ^{-1} a$ has a solution
(a) in all values of $a$
(b) $|a|<\frac{1}{2}$
(c) $|a| \geq \frac{1}{\sqrt{2}}$
(d) $|a| \leq \frac{1}{\sqrt{2}}$
18. Let $A(2,-3)$ and $B(-2,1)$ be the vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex $C$ will be
(a) $2 x+3 y=9$
(b) $2 x-3 y=7$
(c) $3 x+2 y=5$
(d) $3 x-2 y=3$
19. The line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ in the ratio
(a) $2: 3$
(b) $1: 2$
(c) $1: 1$
(d) $4: 3$
20. The pair of points which lie on the same side of the straight line $3 x-8 y-7=0$ is
(a) $(0,-1) ;(0,0)$
(b) $(24,-3) ;(1,1)$
(c) $(-1,-1) ;(3,7)$
(d) $(0,1) ;(3,0)$
21. The angle between two tangents drawn from the origin to the circle $(x-7)^{2}+(y+1)^{2}=25$ is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{2}$
(d) 0
22. The equation of the circle having its centre on the line $x+2 y-3=0$ and passing through the points of intersection of the circles $x^{2}+y^{2}-2 x-4 y+1=0$ and $x^{2}+y^{2}-4 x-2 y+4=0$ is
(a) $x^{2}+y^{2}-6 x+7=0$
(b) $x^{2}+y^{2}-3 y+4=0$
(c) $x^{2}+y^{2}-2 x-2 y+1=0$
(d) $x^{2}+y^{2}-2 x-4 y+4=0$
23. If $2 x^{2}+\lambda x y+2 y^{2}+(\lambda-4) x+6 y-5=0$ is the equation of a circle then its radius is
(a) $3 \sqrt{2}$
(b) $2 \sqrt{3}$
(c) $2 \sqrt{2}$
(d) none of these
24. The normal to the parabola $y^{2}=8 x$ at the point $(2,4)$ meets the parabola again at the point
(a) $(-18,-12)$
(b) $(-18,12)$
(c) $(18,12)$
(d) $(18,-12)$
25. The equation of the directrix of the parabola $y^{2}+4 y+4 x+2=0$ is
(a) $x=-1$
(b) $x=1$
(c) $x=-\frac{3}{2}$
(d) $x=\frac{3}{2}$
26. The angle between pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point $(1,2)$ is
(a) $\tan ^{-1} \frac{12}{5}$
(b) $\tan ^{-1} \frac{6}{\sqrt{5}}$
(c) $\tan ^{-1} \frac{12}{\sqrt{5}}$
(d) $\tan ^{-1} \frac{\sqrt{12}}{5}$
27. The equation of the hyperbola whose foci are $(6,5),(-4,5)$ and eccentricity $\frac{5}{4}$ is
(a) $\frac{(x-1)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
(b) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
(c) $\frac{(x-1)^{2}}{16}-\frac{(y-5)^{2}}{9}=-1$
(d) none of these
28. 10 different letters of English alphabet are given. Words of 5 letters are formed from these given letters. How many words are formed when at least one letter is repeated?
(a) 69760
(b) 98748
(c) 96747
(d) 97147
29. Total number of four digit odd numbers that can be formed using $0,1,2,3,5,7$ are (repetition allowed)
(a) 216
(b) 375
(c) 400
(d) 720
30. $\left({ }^{10} C_{0}\right)^{2}-\left({ }^{10} C_{1}\right)^{2}+\ldots .-\left({ }^{10} C_{9}\right)^{2}+\left({ }^{10} C_{10}\right)^{2}$ equals
(a) ${ }^{10} C_{5}$
(b) $-{ }^{10} C_{5}$
(c) $\left({ }^{10} C_{5}\right)^{2}$
(d) $(10!)^{2}$
31. The coefficient of $x^{32}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is
(a) $-{ }^{15} C_{3}$
(b) ${ }^{15} C_{4}$
(c) $-{ }^{15} C_{5}$
(d) ${ }^{15} C_{2}$
32. The value of $\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is equal to
(a) $\left[\begin{array}{l}43 \\ 44\end{array}\right]$
(b) $\left[\begin{array}{l}43 \\ 45\end{array}\right]$
(c) $\left[\begin{array}{l}45 \\ 44\end{array}\right]$
(d) none of these
33. The value of $\left|\begin{array}{lll}a+b & a+2 b & a+3 b \\ a+2 b & a+3 b & a+4 b \\ a+4 b & a+5 b & a+6 b\end{array}\right|$ is equal to
(a) $a^{3}+b^{3}+c^{3}-3 a b c$
(b) $a^{3}+b^{3}+c^{3}$
(c) 0
(d) none of these
34. If $I_{3}$ is the identity matrix of order 3 , then $I_{3}^{-1}$ is
(a) 0
(b) $3 I_{3}$
(c) $I_{3}$
(d) does not exist
35. Domain of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$ is
(a) $[1,9]$
(b) $[-1,9]$
(c) $[-9,1]$
(d) $[-9,-1]$
36. Range of $f(x)=\cos 2 x-\sin 2 x$, is the set
(a) $[-\sqrt{2}, \sqrt{2}]$
(b) $[-1,1]$
(c) $[-2,2]$
(d) none of these
37. $\lim _{x \rightarrow 1} \frac{\sin \left(e^{x-1}-1\right)}{\log x}$ is
(a) 0
(b) 1
(c) e
(d) none of these
38. If the function $f(x)= \begin{cases}\frac{x^{2}-(A+2) x+A}{x-2} & \text { for } x \neq 2 \\ \text { is continuous at } x=2 \text {, then } & \text { for } x=2\end{cases}$
(a) $A=0$
(b) $A=1$
(c) $A=-1$
(d) none of these
39. Which of the following functions is differentiable at $x=0$ ?
(a) $\cos (|x|)+|x|$
(b) $\cos (|x|)-|x|$
(c) $\sin (|x|)+|x|$
(d) $\sin (|x|)-|x|$
40. Left hand derivative of $\sec ^{-1}\left\{\frac{1}{2 x^{2}-1}\right\}$ with respect to $\sqrt{1+3 x}$ at $x=-\frac{1}{3}$ is
(a) 0
(b) $\frac{1}{2}$
(c) $\frac{1}{3}$
(d) does not exist
41. If $f(x)=x e^{x(1-x)}$, then $f(x)$ is
(a) increasing on $\left[-\frac{1}{2}, 1\right]$
(b) decreasing on $R$
(c) increasing on $R$
(d) decreasing on $\left[-\frac{1}{2}, 1\right]$
42. If $f(x)=x(x-2)(x-4), 1 \leq x \leq 4$, then a number satisfying the conditions of the Lagrange's mean value theorem is
(a) 1
(b) 2
(c) $\frac{5}{2}$
(d) $\frac{7}{2}$
43. $\int \frac{1+x+\sqrt{x+x^{2}}}{\sqrt{x}+\sqrt{1+x}} d x$ is equal to
(a) $\frac{1}{2} \sqrt{1+x}+C$
(b) $\frac{2}{3}(1+x)^{3 / 2}+C$
(c) $\sqrt{1+x}+C$
(d) $2(x+1)^{3 / 2}+C$
44. $\int_{0}^{2} x^{2}[x] d x$ is equal to
(a) $\frac{5}{3}$
(b) $\frac{7}{3}$
(c) $\frac{8}{3}$
(d) $\frac{4}{3}$
45. If $f(x)=\int_{x^{2}}^{x^{3}} \frac{d t}{\log t} ; x>0$, then
(a) $f^{\prime}(x)=-\frac{1}{6} \log x$
(b) $f$ is an increasing function
(c) $f$ has minimum at $x=1$
(d) none of these
46. $\quad$ The area bounded by the curve $y=4 x-x^{2}$ and $x$-axis is
(a) $\frac{30}{7}$ sq. units
(b) $\frac{31}{7}$ sq. units
(c) $\frac{32}{3}$ sq. units
(d) $\frac{34}{3}$ sq. units
47. The solution of the equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$ is
(a) $y \sin y=x^{2} \log x+\frac{x^{2}}{2}+c$
(b) $y \cos y=x^{2}(\log x+1)+c$
(c) $y \cos y=x^{2} \log x+\frac{x^{2}}{2}+c$
(d) $y \sin y=x^{2} \log x+c$
48. The probability of a man hitting a target is $\frac{3}{4}$. He tries 5 times. The probability that the target will be hit at least 3 times, is
(a) $\frac{291}{364}$
(b) $\frac{371}{464}$
(c) $\frac{471}{502}$
(d) $\frac{459}{512}$
49. The mean and variance of a binomial variable $X$ are 2 and 1 respectively, then $P(X \geq 1)$ is
(a) $\frac{2}{3}$
(b) $\frac{4}{5}$
(c) $\frac{7}{8}$
(d) $\frac{15}{16}$
50. In 324 throws of 4 dice, the expected number of times 3 sixes occur is
(a) 81
(b) 5
(c) 9
(d) 31
51. If $\vec{a}=-3 \hat{i}+7 \hat{j}+5 \hat{k}, \vec{b}=-3 \hat{i}+7 \hat{i}-3 \hat{k}$ and $\vec{c}=7 \hat{i}-5 \hat{j}-3 \hat{k}$ are three coterminous edges of a parallelepiped, then its volume is
(a) 108
(b) 210
(c) 272
(d) 308
52. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then angle between $\vec{a}$ and $\vec{b}$ is
(a) $\frac{3 \pi}{4}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{2}$
(d) $\pi$
53. The perpendicular distance of the point $(2,4,-1)$ from the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$ is
(a) 3
(b) 5
(c) 7
(d) 9
54. The equation of sphere, which passes through the intersection of the sphere $x^{2}+y^{2}+z^{2}=9$ and the plane $2 x+3 y+4 z=5$ and through the point $(1,2,3)$ is
(a) $3\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z-22=0$
(b) $\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z-22=0$
(c) $3\left(x^{2}+y^{2}+z^{2}\right)+2 x+3 y+4 z-22=0$
(d) $3\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z+22=0$
55. A particle has three velocities $5 \mathrm{~m} / \mathrm{sec}, 10 \mathrm{~m} / \mathrm{sec}$ and $15 \mathrm{~m} / \mathrm{sec}$ inclined at angles of $120^{\circ}$ to one another. The resultant velocity is
(a) $5 \sqrt{3}, 30^{\circ}$
(b) $5 \sqrt{3}, 210^{\circ}$
(c) $5,210^{\circ}$
(d) none of these
56. A parachute weighing 1 kg falling with uniform acceleration from rest describes 16 m in first 4 secs. The resultant pressure of air on the parachute is
(a) 8.7 N
(b) 7.8 N
(c) 9.8 N
(d) none of these
57. The maximum value of $z=5 x+3 y$, subject of constraints $5 x+2 y \leq 10, x \geq 0, y \geq 0$ is
(a) 6
(b) 10
(c) 15
(d) 25
58. Ranks of 10 students of a class in two subjects are $(1,10),(2,9),(3,8),(4,7),(5,6),(6,5)$, $(7,4),(8,3),(9,2),(10,1)$, then rank correlation coefficient is
(a) 0
(b) -1
(c) 1
(d) 0.5
59. If $4^{\log _{9} 3}+9^{\log _{2} 4}=10^{\log _{x} 83},(x \in R)$, then $x$ is
(a) 4
(b) 9
(c) 10
(d) none of these
60. If $f(x)=x^{\alpha} \log x$ and $f(0)=0$, then the value of $\alpha$ for which Rolle's theorem can be applied in $[0,1]$, is
(a) -2
(b) -1
(c) 0
(d) $\frac{1}{2}$
61. If $4 a^{2}+9 b^{2}+16 c^{2}=2(3 a b+6 b c+4 c a)$, where $a, b, c$ are nonzero numbers, then $a, b, c$ are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these
62. Let $a, b$ be two positive numbers, where $a>b$ and $4 \times$ G.M. $=5 \times$ H.M. for the numbers. Then $a$ is
(a) $4 b$
(b) $\frac{1}{4} b$
(c) $2 b$
(d) $b$
63. The solution set of $\left|\frac{x+1}{x}\right|+|x+1|=\frac{(x+1)^{2}}{|x|}$ is
(a) $\{x \mid x \geq 0\}$
(b) $\{x \mid x>0\} \cup\{-1\}$
(c) $\{-1,1\}$
(d) $\{x \mid x \geq 1$ or $x \leq-1\}$
64. If one root of the equation $\left(k^{2}+1\right) x^{2}+13 x+4 k=0$ is reciprocal of the other then $k$ has the value
(a) $-2+\sqrt{3}$
(b) $2-\sqrt{3}$
(c) 1
(d) none of these
65. If $\frac{1}{4-3 i}$ is a root of $a x^{2}+b x+1=0$, where $a, b$ are real, then
(a) $a=25, b=-8$
(b) $a=25, b=8$
(c) $a=5, b=4$
(d) none of these
66. If $(x-1)^{4}-16=0$ then the sum of non real complex values of $x$ is
(a) 2
(b) 0
(c) 4
(d) none of these
67. If $e^{i \theta}=\cos \theta+i \sin \theta$ then for the $\triangle A B C, e^{i A} . e^{i B} . e^{i C}$ is
(a) $-i$
(b) 1
(c) -1
(d) none of these
68. The total number of words that can be made by writing the letters of the word PARAMETER so that no vowel is between two consonants is
(a) 1440
(b) 1800
(c) 2160
(d) none of these
69. In a polygon the number of diagonals is 54 . The number of sides of the polygon is
(a) 10
(b) 12
(c) 9
(d) none of these
70. If $\Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}1 & b c & a \\ 1 & c a & b \\ 1 & a b & c\end{array}\right|$ then
(a) $\Delta_{1}+\Delta_{2}=0$
(b) $\Delta_{1}+2 \Delta_{2}=0$
(c) $\Delta_{1}=\Delta_{2}$
(d) none of these
71. The system of equations $2 x-y+z=0, x-2 y+z=0$ and $\lambda x-y+2 z=0$ has infinite number of nontrivial solutions for
(a) $\lambda=1$
(b) $\lambda=5$
(c) $\lambda=-5$
(d) no real value of $\lambda$
72. If the coefficients of the $(m+1)$ th term and the $(m+3)$ th term in the expansion of $(1+x)^{20}$ are equal then the value of $m$ is
(a) 10
(b) 8
(c) 9
(d) none of these
73. The coefficient of $x^{6}$ in $\left\{(1+x)^{6}+(1+x)^{7}+\ldots \ldots .+(1+x)^{15}\right\}$ is
(a) ${ }^{16} \mathrm{C}_{9}$
(b) ${ }^{16} \mathrm{C}_{5}-{ }^{6} \mathrm{C}_{5}$
(c) ${ }^{16} \mathrm{C}_{6}-1$
(d) none of these
74. The sum $\frac{1}{2}{ }^{10} C_{0}-{ }^{10} C_{1}+2 .{ }^{10} C_{2}-2^{2} .{ }^{10} C_{3}+\ldots .+2{ }^{9} .{ }^{10} C_{0}$ is equal to
(a) $\frac{1}{2}$
(b) 0
(c) $\frac{1}{2} \cdot 3^{10}$
(d) none of these
75. If $A=\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right], B=\left[\begin{array}{ccc}\omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \\ \omega & \omega^{2} & 1\end{array}\right]$ and $C=\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right]$ where $\omega$ is the complex cube root of 1 then $(A+B) C$ is equal to
(a) $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
76. $\sum_{n=1}^{\infty} \frac{1}{2 n(2 n+1)}$ is equal to
(a) $\log _{e}\left(\frac{2}{e}\right)$
(b) $1-\log _{e} 2$
(c) $1-\log _{e} \frac{1}{2 e}$
(d) none of these
77. If $|x|<1$, the coefficient of $x^{3}$ in the expansion of $\frac{1}{e^{x} .(1+x)}$ is
(a) $\frac{8}{3}$
(b) $-\frac{8}{3}$
(c) $-\frac{11}{6}$
(d) none of these
78. The minimum value of $\cos 2 \theta+\cos \theta$ for real values of $\theta$ is
(a) $-\frac{9}{8}$
(b) 0
(c) -2
(d) none of these
79. If $\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ are the roots of the equation $8 x^{2}-26 x+15=0$ then $\cos (\alpha+\beta)$ is equal to
(a) $-\frac{627}{725}$
(b) $\frac{627}{725}$
(c) -1
(d) none of these
80. Let $f(x)=\sec ^{-1} x+\tan ^{-1} x$. Then $f(x)$ is real for
(a) $x \in[-1,1]$
(b) $x \in R$
(c) $x \in(-\infty,-1] \cup[1, \infty)$
(d) none of these
81. The value of $\tan \left\{2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right\}$ is
(a) 0
(b) 1
(c) $\frac{7}{17}$
(d) none of these
82. The number of solutions of $\log _{2}(x+5)=6-x$ is
(a) 2
(b) 0
(c) 3
(d) none of these
83. In a $\triangle A B C, a=5, b=4$ and $\tan \frac{C}{2}=\sqrt{\frac{7}{9}}$. The side $c$ is
(a) 6
(b) 3
(c) 2
(d) none of these
84. If in a $\triangle A B C, 3 a=b+c$ then $\tan \frac{B}{2} \cdot \tan \frac{C}{2}$ is equal to
(a) $\tan \frac{A}{2}$
(b) 1
(c) 2
(d) none of these
85. A family of lines is given by $(1+2 \lambda) x+(1-\lambda) y+\lambda=0, \lambda$ being the parameter. The line belonging to this family at the maximum distance from the point $(1,4)$ is
(a) $4 x-y+1=0$
(b) $33 x+12 y+7=0$
(c) $12 x+33 y=7$
(d) none of these
86. The combined equation of the pair of lines through the point $(1,0)$ and parallel to the lines represented by $2 x^{2}-x y-y^{2}=0$ is
(a) $2 x^{2}-x y-2 y^{2}+4 x-y=6$
(b) $2 x^{2}-x y-y^{2}-4 x-y+2=0$
(c) $2 x^{2}-x y-y^{2}-4 x+y+2=0$
(d) none of these
87. A ray of light incident at the point $(-2,-1)$ gets reflected from the tangent at $(0,-1)$ to the circle $x^{2}+y^{2}=1$. The reflected ray touches the circle. The equation of the line along which the incident ray moved is
(a) $4 x-3 y+11=0$
(b) $4 x+3 y+11=0$
(c) $3 x+4 y+11=0$
(d) none of these
88. The equation of a circle $C_{1}$ is $x^{2}+y^{2}-4 x-2 y-11=0$. A circle $C_{2}$ of radius 1 rolls on the outside of the circle $C_{1}$. The locus of the centre of $C_{2}$ has the equation
(a) $x^{2}+y^{2}-4 x-2 y-20=0$
(b) $x^{2}+y^{2}+4 x+2 y-20=0$
(c) $x^{2}+y^{2}-3 x-y-11=0$
(d) none of these
89. The length of the latus rectum of the parabola $x=a y^{2}+b y+c$ is
(a) $\frac{a}{4}$
(b) $\frac{a}{3}$
(c) $\frac{1}{a}$
(d) $\frac{1}{4 a}$
90. The H.M. of the segments of a focal chord of the parabola $y^{2}=4 a x$ is
(a) $4 a$
(b) $2 a$
(c) $a$
(d) $a^{2}$
91. The centre of the conic section $14 x^{2}-4 x y+11 y^{2}-44 x-58 y+71=0$ is
(a) $(2,3)$
(b) $(2,-3)$
(c) $(-2,3)$
(d) $(-2,-3)$
92. $\quad P$ is a variable point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$ whose foci are $F_{1}$ and $F_{2}$. The maximum area (in unit ${ }^{2}$ ) of the $\triangle \mathrm{PFF}^{\prime}$ is
(a) $2 b \sqrt{a^{2}-b^{2}}$
(b) $\sqrt{2} \mathrm{~b} \sqrt{a^{2}-b^{2}}$
(c) $b \sqrt{a^{2}-b^{2}}$
(d) $2 a \sqrt{a^{2}-b^{2}}$
93. If the tangent to the ellipse $x^{2}+4 y^{2}=16$ at the point ' $\phi$ ' is a normal to the circle $x^{2}+y^{2}-8 x-4 y=0$ then $\phi$
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{4}$
94. If $f(x)=\frac{1}{1-x}, x \neq 0,1$, then the graph of the function $y=f\{f(f(x))\}, x>1$, is
(a) a circle
(b) an ellipse
(c) a straight line
(d) a pair of straight lines
95. Let $f:(-\infty, 1] \rightarrow(-\infty, 1]$ such that $f(x)=x(2-x)$. Then $f^{-1}(x)$ is
(a) $1+\sqrt{1-x}$
(b) $1-\sqrt{1-x}$
(c) $\sqrt{1-x}$
(d) none of these
96. The derivative of $\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}$ with respect to $\tan ^{-1} x$ is
(a) $\frac{\sqrt{1+x^{2}}-1}{x^{2}}$
(b) 1
(c) $\frac{1}{1+x^{2}}$
(d) none of these
97. $\lim _{x \rightarrow 0} \frac{\left(1+x+x^{2}\right)-e^{x}}{x^{2}}$ is equal to
(a) 1
(b) 0
(c) $\frac{1}{2}$
(d) none of these
98. Let $s_{n}=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots$. . to $n$ terms. Then $\lim _{n \rightarrow \infty} s_{n}$ is equal to
(a) $\frac{1}{3}$
(b) 3
(c) $\frac{1}{4}$
(d) $\infty$
99. Let $y=|x|+|x-2|$. Then $\frac{d y}{d x}$ at $x=2$ is
(a) 2
(b) 0
(c) does not exist
(d) none of these
100. A function $f(x)$ is defined as below $f(x)=\frac{\cos (\sin x)-\cos x}{x^{2}}, x \neq 0$ and $f(0)=a . f(x)$ is continuous at $x=0$ if $a$ equals
(a) 0
(b) 4
(c) 5
(d) 6
