PAPER – I

1.	A point moves in a straight line so that its displacement x metre at time t sec is given by
	$x^2 = 1 + t^2$. Its acceleration in m/s ² at time t sec is

(a) $\frac{1}{x^3}$ (b) $\frac{1}{x} - \frac{1}{x^2}$ (c) $\frac{1}{x} - \frac{t^2}{x^3}$

2. A projectile is thrown with an initial velocity of $(x\hat{i} + y\hat{j})$ m/s. If the range of the projectile is double the maximum height reached by it then

(a) x = 2y

(b) y = 2x

(c) x = y

(d) y = 4x

3. A heavy uniform chain lies on horizontal table top. If the coefficient of friction between the chain and the table surface is 0.25 then the maximum fraction of length of chain that can overhang on edge of table is

(a) 20 %

(c) 25 % (d) 15 %

A body of mass M is situated in a potential field $u(x) = u_0(1 - \cos\alpha x)$, where u_0 and α are 4. constants. The time period of small oscillations of body will be

(a) $2\pi \sqrt{\frac{M}{u_0 \alpha^2}}$ (b) $2\pi \sqrt{\frac{u_0}{M\alpha^2}}$ (c) $2\pi \sqrt{\frac{u_0 \alpha^2}{M}}$ (d) $2\pi \sqrt{Mu_0 \alpha^2}$

5. 1000 drops of a liquid of surface tension σ and radius r join together to form a big single drop. The energy released raises the temperature of the drop. If ρ be the density of the liquid and S be the specific heat, the rise in temperature of the drop would be (J = Joule's)equivalent of heat)

(a) $\frac{\sigma}{IrSo}$ (b) $\frac{10\sigma}{IrSo}$

(c) $\frac{100\sigma}{JrSo}$

(d) $\frac{27\sigma}{10 Jr So}$

The masses of the blocks A and B are 0.5 kg and 1 kg 6. respectively. These are arranged as shown in the figure and are connected by a massless string. The coefficient of friction between all contact surfaces is 0.4. The force needed to move the block B with constant velocity will be $(g = 10 \text{ m/s}^2)$ (b) 10 N

(a) 5 N

(c) 15 N

(d) 20 N

7. A pendulum consists of a wooden bob of mass m and length l. A bullet of mass m_1 is fired towards the pendulum with a speed v_1 . The bullet emerges out of the bob with a speed $v_1/3$ and the bob just completes motion along a vertical circle. Then v_1 is

(a) $\left(\frac{m}{m}\right)\sqrt{5gl}$ (b) $\frac{3}{2}\left(\frac{m}{m}\right)\sqrt{5gl}$ (c) $\frac{2}{3}\left(\frac{m_1}{m}\right)\sqrt{5gl}$ (d) $\left(\frac{m_1}{m}\right)\sqrt{gl}$

8.	A metal wire of length L and radius r is clamped rigidly at one end. A force F is applied a another end so that its length increases by L . The increase in length of another metal wire o				
	length 2L and	radius $2r$, when stretch	hed by a force $2F$, will	be	
	(a) $2L$	(b) <i>L</i>	(c) $L/2$	(d) $L/4$	
		nce			
9.	An incompres	sible liquid is continuo	ously flowing through a	cylindrical pine whose rac	lins is

essible liquid is continuously flowing through a cylindrical pipe whose radius is 2R at point A. The radius at point B, in the direction of flow, is R. If the velocity of liquid at point A is v then its velocity at point B will be (a) v (b) 4v

	` '	,	`	10	43	` '	
10.	A sphere of density	o, specific hea	at capacity c	and radius	r, is hung	by a therr	nally

insulated thread in an enclosure which is kept constant at a lower temperature than the sphere. The temperature of the sphere starts to drop at a rate which depends upon the temperature difference between the sphere and the enclosure and the nature of the surface of the sphere, and is proportional to

(a)
$$\frac{c}{r^3 \rho}$$
 (b) $\frac{1}{r^3 \rho c}$ (c) $3r^3 \rho c$ (d) $\frac{1}{r \rho c}$

11. A steel tape gives correct measurement at 20°C. A piece of wood is being measured with the steel tape at 0°C. The reading is 25 cm on the tape. The real length of the given piece of wood must be

The figure shows a process on a gas in which pressure **12.** and volume both changes. The molar heat capacity for this process is C. Then

(b)
$$C = C_V$$

(a)
$$C = 0$$
 (b) $C = C_V$ (c) $C > C_V$ (d) $C < C_V$

(d)
$$C < C_1$$

13. Heat required to melt 1 gm of ice is 80 cal. A man melts 60 gms of ice by chewing it in 1 minute. His power is

- (a) 4800 W
- (b) 336 W
- (c) 80 W

The equivalent capacitance of the network (with all capacitors having the same capacitance C) is 14.

(c)
$$C\left(\frac{\sqrt{3}-1}{2}\right)$$
 (d) $C\left(\frac{\sqrt{3}+1}{2}\right)$

(d)
$$C\left(\frac{\sqrt{3}+1}{2}\right)$$

There is a current of 1.344 amp in a copper wire whose area of cross-section normal to the **15.** length of the wire is 1 mm². If the number of free electrons per cm³ is 8.4×10^{22} , then the drift velocity of electrons will be

(a) 1.0 mm per sec

(b) 1.0 meter per sec

(c) 0.1 mm per sec

- (d) 0.01 mm per sec
- **16.** In the circuit shown, the total current supplied by the battery is

17. The resistance of hexagon circuit between *A* and *B* represented in figure is

(b)
$$0.5 r$$

(d)
$$3r$$

18. Four metallic plates, each with surface area of one side A, are placed at a distance d from each other. The plates are connected as shown in figure. Then the capacitance of the system between P and Q is

(b)
$$\frac{2\varepsilon_0 A}{d}$$

(c)
$$\frac{2\varepsilon_0 A}{3d}$$

(d)
$$\frac{3\varepsilon_0 A}{2d}$$

- 19. An ideal ammeter and an ideal voltmeter are connected as shown. The ammeter and voltmeter reading for $R_1 = 5\Omega$, $R_2 = 15\Omega$, $R_3 = 1.25\Omega$ and E = 20V are given as
 - (a) 6.25 A, 3.75 V
- (b) 3.00 A, 5 V
- (c) 3.75 A, 3.75 V
- (d) 3.75 A; 6.25 V

- 20. A point charge + q is fixed at point B. Another point charge + q at A of mass m vertically above B at height h is dropped from rest. Choose the correct statement
 - (a) It will collide with B
 - (b) It will execute S.H.M
 - (c) It will go down only if $\frac{q^2}{4\pi\epsilon_0} < mgh^2$
 - (d) go down up to a point and then come up.

- **21.** The temperature of cold junction of a thermocouple is -20° C and the temperature of inversion is 560°C. The neutral temperature is
 - (a) 270°C
- (b) 560°C
- (c) 1120°C
- (d) 290°C

22. A cube made of wires of equal length is connected to a battery as shown in figure. The side of cube is L. The magnetic field at the centre of cube will be

- (a) $\frac{12}{\sqrt{2}} \frac{\mu_0 I}{\pi L}$ (b) $\frac{6}{\sqrt{2}} \frac{\mu_0 I}{\pi L}$ (c) $6 \frac{\mu_0 I}{\pi L}$
- (d) zero
- 23. Two straight long conductors AOB and COD are perpendicular to each other and carry currents I_1 and I_2 respectively. The magnitude of the magnetic induction at a point P at a distance a from the point O in a direction perpendicular to the plane ABCD is

- (a) $\frac{\mu_0}{2\pi a}(I_1 + I_2)$ (b) $\frac{\mu_0}{2\pi a} \left(-I_2 \right)$ (c) $\frac{\mu_0}{2\pi a} \left(+I_2 \right)^{\frac{1}{2}}$ (d) $\frac{\mu_0}{2\pi a} \left(\frac{I_1 I_2}{I_1 + I_2} \right)$
- 24. An e.m.f. of 15 V is applied in a circuit containing 5 H inductance and 10 ohm resistance. The ratio of the currents at time $t = \infty$ and t = 1 second is
 - (a) $\frac{\sqrt{e}}{(\sqrt{e}-1)}$ (b) $\frac{e^2}{(e^2-1)}$
- (c) 1-e
- Earth's magnetic induction at a certain point is 7×10^{-5} Wb/m². This field is to be annulled 25. by the magnetic induction at the centre of a circular conducing loop 5.0 cm in radius. The required current is
 - (a) 0.056 A
- (b) 6.5A
- (c) 5.6 A (d) 12.8 A
- 26. The intensity of sound after passing through a slab decreases by 20%. On passing through two such slabs, the intensity will decrease by
 - (a) 50 %
- (b) 40 %
- (c) 36 %
- (d) 30%
- The electric field intensity at a point at a distance 2 m from a charge q is E. The amount of 27. work done in bringing a charge of 2 coulomb from infinity to this point will be
 - (a) 2E joules
- (b) 4E joules
- (c) $\frac{E}{2}$ joules (d) $\frac{E}{4}$ joules
- The bob of a pendulum, is attached to a horizontal spring of 28. spring constant k. The pendulum will undergo simple harmonic motion with period (T)

(b) $2\pi\sqrt{\frac{m}{l}}$

- (d) $\frac{1}{2} 2\pi \sqrt{\left(\frac{L}{g}\right)} + \frac{2\pi}{\sqrt{m/k}}$
- 29. Transverse waves are generated in two uniform wires A and B of the same material by attaching their free ends to a vibrating source of frequency 200 Hz. The cross-section of A is

(a) $1:\sqrt{2}$	(b) $\sqrt{2}:1$	(c) 1:2	(d) 2:1			
interfering beams		riment shifts the cen	ced in the path of one of tral fringes to a position f the light used is (d) 7500 Å			
A concave lens of distance of the imag		es an image equal to	1/n of size of object, the			
(a) $(n+1)F$	(b) $(n-1)F$	(c) $\left(\frac{n+1}{n}\right)F$	(d) $\left(\frac{n-1}{n}\right)F$			
along the same axis	_	een them. If a parallel	focal length 5 cm are kept beam of light falling on A			
(a) 25	(b) 15	(c) 30	(d) 50			
	e two lenses is 54 cm.		l adjustment is 8 and the eye lens and objective lens			
(a) 6 cm and 48 cm	(b) 48 cm and 6 cm	(c) 8 cm and 64 cm	(d) 64 cm and 8 cm			
Two electrons of kinetic energy 2.5 eV fall on a metal plate, which has work function of 4.0 eV. Number of electrons ejected from the metal surface is						
		-	hich has work function of			
		-	which has work function of (d) more than two			
4.0 eV. Number of e (a) one The binding energic atoms of the elem accompanied by rele	(b) two es of the atoms of element <i>B</i> fuse to give or ease of energy <i>e</i> . Then <i>B</i>	ne metal surface is (c) zero nents A and B are E_a are atom of element E_a , E_b and e are related	(d) more than two and E_b respectively. Three A. This fusion process is to each other as			
4.0 eV. Number of e (a) one The binding energic atoms of the elem accompanied by rele	(b) two es of the atoms of element <i>B</i> fuse to give or ease of energy <i>e</i> . Then <i>B</i>	ne metal surface is (c) zero nents A and B are E_a are atom of element E_a , E_b and e are related	(d) more than two and E_b respectively. Three A. This fusion process is to each other as			
4.0 eV. Number of e (a) one The binding energic atoms of the elem accompanied by rele	(b) two es of the atoms of element <i>B</i> fuse to give or	ne metal surface is (c) zero nents A and B are E_a are atom of element E_a , E_b and e are related	(d) more than two and E_b respectively. Three A. This fusion process is to each other as			

atom to the de-Broglie wavelength of electrons having the same velocity as the electron in

(c) 1:4

(d) 2:1

the first Bohr orbit of the hydrogen atom?

(b) 1:2

half that of B while the tension on A is twice that on B. The ratio of wavelengths of the

transverse waves in A and B is

30.

31.

32.

33.

34.

35.

36.

(a) 1:1

37. In the X-ray tube before striking the target we accelerate the electrons through a potential difference of *V* volt. For which of the following value of *V*, we will have *X*-rays of largest wavelength?

(a) 10 kV

(b) 20 kV

(c) 30 kV

(d) 40 kV

38. A diode used in the circuit shown has constant voltage drop of 0.5 V at all currents and a maximum power rating of 100 milli-watts. What should be the value of the resistor R, connected in series with the diode to obtain maximum current?

(a) 5 Ω

(b) 5.6Ω

(c) 6.76Ω

(d) 20Ω

39. The dimensional formula of magnetic flux is

(a) $[ML^2T^{-2}A^{-1}]$

(b) $[ML^0T^{-2}A^{-2}]$

(c) $[M^{0}L^{-2}T^{-2}A^{-2}]$

(d) $[ML^2T^{-1}A^3]$

40. Two particles A and B are connected by a rigid rod AB. The rod slides along perpendicular rails as shown here. The velocity of A to the left is 10 m/s. What is the velocity of B when angle $\alpha = 30^{\circ}$?

(a) 9.8 m/s

(b) 10 m/s

(c) 5.8 m/s

(d) 17.3 m/s

41. If the thrust acting on a rocket moving with a velocity of 300 m/s is 210 N, then the rate of combustion of fuel is

(a) 0.7 kg/s

(b) 1.4 kg/s

(c) 0.07 kg/s

(d) 10.7 kg/s.

42. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be

(b) 30°

(c) 45°

(d) 60°

43. If a sphere is rolling, the ratio of the translational energy to total kinetic energy is given by

(a) 7:10

(b) 2:5

(c) 10:7

(d) 5:7

44. There is a flat uniform triangular plate ABC such that AB = 4 cm, BC = 3 cm and $\angle ABC = 90^{\circ}$, figure. The moment of inertia of the plate about AB, BC and CA as axis is respectively I_1 , I_2 and I_3 . The incorrect statement is

(b) $I_2 > I_1$

47.	stretches by 2 cm.	When a 4 kg mass is hung vertically on a light spring that obeys Hook's law, the spring stretches by 2 cm. The work required to be done by an external agent in stretching this spring further 5 cm will be $(g = 9.8 \text{ m/s}^2)$				
	(a) 0.245 J	(b) 4.410 J	(c) 2.450 J	(d) 4.900 J.		
48.	A soap bubble in vacuum has a radius of 3 cm and another soap bubble in vacuum has radius of 4 cm. If two bubbles coalesce under isothermal conditions then the radius of t new bubble is					
	(a) 2.3 cm	(b) 4.5 cm	(c) 5 cm	(d) 7 cm		
49.	of charge, with sur	face charge density		ge q on it. A vertical sheet point of suspension. At		
	(a) $\tan \theta = \frac{\sigma q}{2\varepsilon_0 mg}$	(b) $\tan \theta = \frac{\sigma q}{\epsilon_0 mg}$	(c) $\cot \theta = \frac{\sigma q}{2\varepsilon_0 mg}$	(d) $\cot \theta = \frac{\sigma q}{\varepsilon_0 mg}$		
50.						
	(a) 30 cm, 90 cm	(b) 60 cm, 90 cm	(c) 40 cm, 70 cm	(d) None of these		
51.		f sound in air is 330 i	m/s, the frequency of r	nd a horn of frequency 600 eflected sound as heard by		
	(a) 720 Hz	(b) 555.5 Hz	(c) 550 Hz	(d) 500 Hz.		
52.	A semi-circular arc of electric field at its ce	and the second	uniformly and the char	ge per unit length is λ. The		
	(a) $\frac{\lambda}{4\pi\varepsilon_0 a}$	(b) $\frac{\lambda}{4\varepsilon_0 a}$	(c) $\frac{\lambda}{2\varepsilon_0 a}$	(d) $\frac{\lambda}{2\pi\varepsilon_0 a}$		

The period of revolution of planet A around the sun is 8 times that of B. The distance of A

(c) 4

The escape velocity on the surface of the earth is 11.2 km/s. What would be the escape

velocity on the surface of another planet of the same mass but 1/4 times the radius of the

(c) 5.6 km/s

(d) 5

(d) 11.2 km/s

(c) $I_3 < I_1$

(a) 2

earth?

(a) 44.8 km/s

45.

46.

(d) $I_3 > I_2$

(b) 3

(b) 22.4 km/s

from the sun is how many times greater than that of B from the sun?

53.	A circular coil A has a radius R and the current flowing through it is I . Another circular coi B has radius $2R$ and if $2I$ is the current flowing through it, then the magnetic field at the				
	centre of the circular coil are in the ratio of				
	(a) 4:1	(b) 2:1	(c) 3:1	(d) 1:1	
54.	A bar magnet, of magnetic moment M , is placed in a magnetic field of induction B . The torque exerted on it is				
	(a) $\overrightarrow{M} \cdot \overrightarrow{B}$		$(c) \overrightarrow{M} \vee \overrightarrow{P}$	$\overrightarrow{R} \stackrel{\longrightarrow}{M}$	
	1	(b) B × W	(c) $\overrightarrow{M} \times \overrightarrow{B}$	$(\mathbf{u}) - \mathbf{b} \cdot \mathbf{M}$	
55.	In an A.C. aircuit the	a surrent is $i = 5 \sin \left(\frac{1}{2} \right)$	π amp and the σ	a.c. potential is $V = 200 \sin \theta$	
33.	in an A.C. cheun, un	e current is $t = 3 \sin \theta$	$\frac{1}{2}$ amp and the a	i.e. potential is $v = 200 \text{ sm}$	
		power consumption i			
	(a) 20 watt	(b) 40 watt	(c) 1000 watt	(d) zero	
	177	all		ace I	
	wand		11-0	rall	
56.	Control of the contro			condary coil are 5 and 4	
	respectively. If 240 V secondary coil is	is applied on the prin	nary coil, then the ratio	o of current in primary and	
	(a) 4:5	(b) 5 : 4	(c) 5:9	(d) 9:5	
57.	If ε_0 and μ_0 represe	ent the permittivity an	d permeability of vacu	num, ε and μ represent the	
	permittivity and permeability of medium, then refractive index of the medium is given by				
	$\mu_0 \varepsilon_0$	με	() [8]	$\mu_0 \varepsilon_0$	
	(a) $\sqrt{\frac{\mu_0 \varepsilon_0}{\mu \varepsilon}}$	(b) $\sqrt{\frac{\mu\epsilon}{\mu_0\epsilon_0}}$	(c) $\sqrt{\frac{\varepsilon}{\mu_0 \varepsilon_0}}$	(d) $\sqrt{\frac{u}{\mu}}$.	
	• •		1. 0	• •	
58.	The electron emitted	in beta radiation origin	nates from		
	(a) inner orbits of ato		(b) free electrons exi	sting in nuclei	
	(c) decay of neutron		(d) photon escaping t	•	

A p-type semiconductor has acceptor level 57 meV above the valence band. The maximum **59.** wavelength of light required to create a hole is

60.

(b) 57×10^{-3} Å (c) 217100 Å (d) 11.61×10^{-33} Å. Which of the following gates will have an output of 1?

(a) $\frac{1}{1}$ (b) $\frac{0}{1}$ (c) $\frac{0}{1}$ (d) $\frac{0}{0}$

CHEMISTRY

Atomic masses: H = 1, C = 12, N = 14, O = 16

Avogadro's number (N_{AV}): 6.023×10^{23}

Atomic numbers: V = 23, Cr = 24, Fe = 26

One litre of 0.1 M CuSO₄ solution is electrolysed till the whole of copper is deposited at cathode. During the electrolysis a gas is released at anode. The volume of the gas evolved at anode at STP is

(a) 112 mL

(b) 254 mL

(c) 1120 mL (d) 2240 mL

An element (X) having equivalent mass E forms a general oxide X_mO_n, its atomic mass should be

(a) $\frac{2En}{}$

(b) 2mEn

(c) $\frac{E}{}$

(d) $\frac{mE}{2n}$

A vessel contains equal masses of three gases A, B and C. The total pressure exerted by the 63. mixture of gases is 3.5 bar at 25°C. The molecular mass of C is twice that of B and molecular mass of A is half of that of B. The partial pressure of B in the vessel is

(a) 1 bar

(b) 2 bar

(c) 1.5 bar

(d) 2.5 bar

At relatively high pressure, van der Waal's equation reduces to

(a) PV = RT

(b) PV = RT - a/V

(c) PV = RT + Pb

(d) $PV = RT - a/V^2$

The volume (V) of an ideal gas is plotted against its temperature (T) **65.** at constant pressures P₁ and P₂. The plots are shown in the figure. So the correct relation between P_1 and P_2 is

(a) $P_1 > P_2$

(c) $P_1 = P_2$

(b) $P_1 < P_2$ (d) $\frac{P_2}{P_1} = \frac{1}{2}$

2 g of hydrogen diffuses out from a container in 10 min. What mass of chlorine will diffuse 66. out in the same time from the same container under similar conditions?

(a) $\sqrt{2 \times 71}$ g

(b) $\sqrt{\frac{2}{71}} g$ (c) $\sqrt{\frac{71}{2}} g$

(d) $\sqrt{71}$ g

An element A has face centred cubic structure with edge length equal to 361 pm. The **67.** apparent radius of atom A is

(a) 127.6 pm

(b) 180.5 pm (c) 160.5 pm (d)64 pm

68. When electrons are trapped in the crystal lattice in place of anion vacancy, the defect in the crystal is called

(a) F-centre

(b) dislocation

(c) electronic defect (d)G-centre

69. If the speed of an electron in the Bohr's first orbit of hydrogen atom be x, then the speed of the electron in second orbit of He⁺ is

(a)
$$\frac{x}{2}$$

(b) 2*x*

(c) *x*

(d)4x

- **70.** Which one of the following statements is incorrect?
 - (a) Isotones are atoms of different elements having same number of neutrons.
 - (b) Isotopes are atoms of different elements having same number of protons.
 - (c) Isobars are atoms of different elements having same number of nucleons.
 - (d) Isotones and isobars are atoms of different elements.
- **71.** According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is

(b)

72. The kinetic energy of an electron in nth orbit of hydrogen atom is given by the relation

(a)
$$K^2 \frac{4\pi^2 me^4}{n^2 h^2}$$

(b)
$$-K^2 \frac{2\pi^2 me^4}{n^2h^2}$$

(c)
$$K^2 \frac{2\pi^2 me^4}{n^2h^2}$$

where K is constant, h is planck's constant, m is the mass and e is the charge of an electron.

- 73. The basic character of oxides MgO, SrO, K₂O, NiO, Cs₂O increase in the order
 - (a) $MgO > SrO > K_2O > NiO > Cs_2O$

(b)
$$Cs_2O < K_2O < MgO < SrO < NiO$$

(c) NiO < MgO < SrO <
$$K_2O$$
 < Cs_2O

(d)
$$K_2O < NiO < MgO < SrO < Cs_2O$$

74. The rate of disintegration of a radioactive element changes from initial value of 10,000 dpm to 2500 dpm in 50 days. The decay constant is

(a)
$$\frac{2500}{10000} d^{-1}$$

(b)
$$1.386 \times 10^{-2} \, d^{-1}$$

(c)
$$\frac{0.693}{2.303} \times 50 \,\mathrm{d}^{-1}$$

(d)
$$2.772 \times 10^{-2} d^{-1}$$

75. How many moles of butane must be burnt to increase the temperature of 10 dm^3 of water from 30°C to 100°C? Given that $\Delta H_{\text{comb}}^{\circ}$ of butane, density of H₂O and specific heat of water are $-2.879 \times 10^3 \text{ kJ mol}^{-1}$, 1.0 g cm^{-3} , $4.184 \text{ JK}^{-1} \text{ g}^{-1}$ respectively.

	(a) 1.017 mol	(b) 2.1 mol	(c) 1.5 mol	(d)0.8 mol	
76.	A system X underg	goes following changes	$; \mathbf{X} \longrightarrow \mathbf{W} \\ (P_1 V_1 T_1) \longrightarrow (P_2 V_2 T_1 T_1) $		$\longrightarrow_{(P_1V_1T_1)} \mathbf{X}$
	The overall process (a) reversible process (c) cyclic as well a	ess	(b) cyclic process (d) isochoric proc	S	(-1 -1-1)
77.	(i) $CH_4(g) + 2O_2(g)$		$\Delta(l)$; $\Delta H = -890 \text{ kJ}$ kJ	ions are endother	mic
78.		$_3$ and H_2 gases at 29	_	_	respectively.
		onia at 298 K in keal me			
	(a) +94.3 (c) -112.3	ncell	(b) + 112.3 (d) - 94.3	- atrance	10 1
79.	At equilibrium	placed in a vessel at a	temperature when	its dissociation i	s appreciable.
	(a) α does not char (b) concentration of		anga with pragaura		
		of ammonia does not cha of hydrogen is less than			A.
	(d) K _p does not cha	ange significantly with 1	pressure.		
80.	$PCl_5(g) \Longrightarrow PCl_3$	the of dissociation of $(g) + Cl_2(g)$. 2 moles of various species where $(g) = (g) + Cl_2(g)$.	f PCl ₅ are taken in a		-
	(c) $2(1-x)$	cel	(d) $2(1+x)$		
81.	The conjugate acid	of NH_2^- is			
	(a) NH ₃		(b) NH_4^+		
	(c) N_2H_4		(d) NH ₂ OH		
82.	(a) 0.01 M H₂S < 0(b) 0.01 M NaCl (c) 0.01 M NaNO₂	of increasing $[H_3O^+]$ in to $0.01 \text{ M } H_2SO_4 < 0.01 \text{ M}$ $0.01 \text{ M } NaNO_2 < 0.01$ 0.01 M NaCl < 0.01 $0.01 \text{ M } NaNO_2 < 0.01 \text{ M}$	$\begin{array}{l} { m NaCl} < 0.01 \ { m M~Nal} \\ { m M~H_2S} < 0.01 \ { m M~H_2} \\ { m M~H_2S} < 0.01 \ { m M~H_2} \end{array}$	NO ₂ SO ₄ SO ₄	1
83.	the concentration of	ffer solution of pH 5 by of salt and acid should b	$e(K_a = 10^{-5})$	etate and acetic ac	id, the ratio of
	(a) 1:10 (c) 10:1		(b) 1 : 1 (d) 1 : 100		
	(-) 10.1		(5) 1.100		

84.	A hypothetical reaction	on, $X_2 + Y_2 \rightarrow 2XY$ for	ollows the mechanism a	as given below
	$X_2 \longrightarrow X + X$		(Fast)	
	$X + Y_2 \longrightarrow XY + Y$		(Slow)	
	$X + Y \longrightarrow XY$		(Fast)	
	The order of the overa	all reaction is		-
	(a) 2	(b) 1	(c) 1.5	(d) zero
	ral wal	hy		a Max
85.	If order of reaction A			-nce
	(a) rate of reaction is			Other Control of the
	The state of the s	-	ncentration of the react	ing species
	(c) the rate of formati(d) rate of decomposit	<u>-</u>		
	(u) rate of decomposit	non or activated comp	piex is zero	
86.	Two liquids A and B	have $p_A^{\circ} > p_B^{\circ}$. They	constitute an ideal bin	nary solution. Which one of
	the following relation	is between mole frac	tion of A in liquid pha	ase (x _A) and that in vapour
	phase (y _A) is true?	all		ce
	(a) $x_A = y_A$,6	(b) $x_A > y_A$	trano
	(a) $x_A = y_A$ (c) $x_A < y_A$		(d) no correlation bet	ween x_A and y_A
87.			with respect to solu	ition of urea
0	(a) 4.5%	(b) 13.5%	(c) 1.5%	(d) 9%
00	`	. ,	` ,	` '
88.		- -	-	dium chloride to that of an
	aqueous solution of gl (a) 1		(c) 0.5	(d) 2.5
		(b) 2	900	(d) 2.3
89.	The oxidation number		$_{3}$] ⁻¹ is	anco
	(a) + 1	(b) + 2	(c) + 3	(d) + 4
90.	From the following fa	cts	The same	
	$(i) 2X^- + Y_2 \longrightarrow 2Y$		(ii) $2W^- + Y_2 \longrightarrow N$	o reaction
	$(iii)2Z^- + X_2 \longrightarrow 2X$			
		lation among the red	uction potentials of the	e species used in the above
	reactions.			_
	(a) $E_{W_2/W^-} > E_{Y_2/Y^-}$	$> E_{X_2/X^-} > E_{Z_2/Z^-}$	(b) $E_{W_2/W^-} > E_{Y_2/Y^-}$	$> E_{Z_2/Z^-} > E_{X_2/X^-}$
	(c) $E_{w_{1}/w_{2}} > E_{z_{1}/z_{2}}$	$> E_{v_{-}/v_{-}} > E_{v_{-}/v_{-}}$	(d) $E_{W_2/W^-} > E_{X_2/X^-}$	$> E_{V/V^-} > E_{Z/Z^-}$
91.	The net charge on on	e gram-ion of N ³⁻ ha	as been calculated by a	a student as $Y \times 10^6$ C. The

91. The net charge on one gram-ion of N^{3-} has been calculated by a student as $Y \times 10^6$ C. The value of Y is

(a) 2.88

(b) 8.2

(c) 6

(d) 3.49

92. The IUPAC name of the compound

(a) 2-carbethoxy cyclopentan-1-one

(b) 1-oxo-2-carbethoxy cyclopentane

(c) carbethoxy cyclo pentanone

(d) none of these

93. Among the following compounds that can exist as enantiomers

- **98.** Cyclohexene on ozonolysis followed by reductive hydrolysis yields
 - (a) CH_3CH_2CHO (2 moles) (b) $CH_3 - C - CH_3$ (2 moles)
 - (c) $CH_3CH_2CHO + CH_2 \ddot{C} CH_3$ (d) $OHC (CH_2)_4 CHO$
- 99. $CH_3 \xrightarrow{KMnO_4} A \xrightarrow{HNO_3/H_2SO_4} B$ (Major product). The product B is

 (a) 4-nitrotoluene (b) 3-nitrotoluene
 - (c) 3-nitrobenzoic acid (d) 4-nitrobenzoic acid
- **100.** Among following, the alkane which exists in solid state at room temperature
 (a) n-heptane
 (b) n-octane
 - (c) n-decane (d) none of these

- 101. The compound, which will give a precipitate with AgNO₃ solution, is
 - (a) CCl₄

(b) CH₃--CH₂--Cl

(c) (CH₃)₃CCl

- (d) CHCl₃
- 102. For the reaction $C_2H_5OH + HX \longrightarrow C_2H_5X + H_2O$ the order of reactivity is
 - (a) HCl > HBr > HI

(b) HI > HBr > HCl

(c) HBr > HCl > HI

- (d) HI > HCl > HBr
- 103. Equation showing 'Sandmeyer's reaction' is

(a)
$$2CH_3CHO \xrightarrow{NaOH} CH_3 - CH - CH_2 - CHO$$

(d)
$$OH \xrightarrow{CHCl_3, KOH} OH \xrightarrow{CHCl_3, KOH} CHC$$

- 104. On boiling with concentrated hydrobromic acid, ethyl phenyl ether will yield
 - (a) phenol and ethyl bromide
- (b) bromobenzene and ethanol

ntrance

(c) phenol and ethane

(d) bromobenzene and ethane

105.
$$C \equiv CH \xrightarrow{D_2O, H_2SO_4} Product (P)$$
. The principal organic product P is

 H_3C

(b) COCHD₂

(c) \longrightarrow CD₂CHO

(d) —CHDCHO

 H_3C

- H₃C
- **106.** Formic acid and acetic acid may be distinguished by the reaction with
 - (a) Sodium

(b) 2,4–Dinitrophenyl hydrazine

(c) Sodium ethoxide

(d) Dilute acidic permanganate

- **107.** Schiff's reagent is
 - (a) magenta coloured solution of rosaniline hydrochloride decolourised with H₂SO₃.
 - (b) magenta solution of rosaniline hydrochloride decolourised with Cl₂.
 - (c) magenta solution of cobalt chloride solution.
 - (d) manganese sulphate solution made ammonical.
- 108. Order of ease of esterification of following alcohols with HCOOH
 - (I) CH₃CH₂OH
- (II) (CH₃)₂CHOH
- (III) (CH₃)₃COH

(a) I < II < III

(b) III < II < I

(c) II < I < III

(d) equal

- (c) anomers of each other (d) enantiomers of each other 112. Which one of the following compounds is paramagnetic in nature?
- (d) $Cr(CO)_6$ (a) $V(CO)_6$ (b) Fe(CO)₅ (c) $Fe_2(CO)_9$
- 113. The processes in which maximum energy is released (b) $O^{-}(g) + e^{-} \longrightarrow O^{2-}(g)$ (d) $S^{-}(g) + e^{-} \longrightarrow S^{2-}(g)$ (a) $O(g) + e^{-} \longrightarrow O^{-}(g)$ (c) $S(g) + e^{-} \longrightarrow S^{-}(g)$
- 114. In O_2^{-1} , O_2^0 and O_2^{-2} molecular species, the total number of antibonding electrons respectively are (c) 6, 6, 6 (d) 8, 6, 8 (a) 7, 6, 8 (b) 1, 0, 2
- 115. A metal M reacts with N₂ to give a compound 'A' (M₃N). 'A' on heating at high temperature gives back 'M' and 'A' on reacting with H₂O gives a gas 'B'. 'B' turns CuSO₄ solution blue on passing through it. A and B can be
- (a) Al and NH₃ (b) Li and NH₃ (c) Na and NH₃ (d) Ca and NH₃ 116. Alkali metals can be extracted from their salts by
 - (a) reduction with Carbon.
 - (b) electrolysis of aqueous solution of their halides.
 - (c) electrolysis of fused halides.
 - (d) reduction with Aluminium.
- Entrance **117.** From Beryllium to Barium (a) reactivity decreases (b) density decreases (c) metallic nature increases (d) strength of metallic bond increases

118. BeO + C
$$\longrightarrow$$
 CO + X
Be (OH)₂ + Y $\stackrel{\text{H}_2\text{O}}{\longleftarrow}$

X and Y in the above sequence are respectively

(a) Be_2C and C_2H_2 (b) Be and H₂ (c) Be_2C and CH_4 (d) Be_2C and C_2H_6 119. Ammonia can be dried over (a) quick lime (b) slaked lime (c) CaCl₂ (d) PCl₅ **120.** Which one of the following oxides is acidic in nature? $\begin{array}{c} \text{--}_{\mathcal{S}} \text{ oxide:} \\ \text{(b) } \text{Al}_2\text{O}_3 \end{array}$ (d) In_2O_3 (a) B_2O_3 (c) Ga₂O₃ Entrance Entrance Entrance Entrance Entrance Entrance Entrance