
SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E-EEE

Title of the Paper: Digital Systems
Sub. Code: 6C0038
Date: 11/11/2010

Max. Marks: 80
Time: 3 Hours
Session: AN

$$
\begin{gathered}
\text { PART - A } \\
\text { Answer ALL the Questions }
\end{gathered}
$$

1. What are universal gates?
2. Convert the binary number 1010101010111 to gray code.
3. State the difference between PLA and PAL.
4. Draw a pair, a quad, and an octet on K-map.
5. Write the difference between a decoder and a demultiplexer.
6. Design a half adder.
7. What is race around condition?
8. State the operation of D flipflop.
9. What is HTL?
10. Mention the advantages and disadvantages of TTL.

PART - B
 $(5 \times 12=60)$
 Answer All the Questions

11. Design a logic circuit to convert the Binary Coded decimal to Excess 3 code and to grey code.
(or)
12. With an example discuss the reduction of switching equations using Boolean Algebra.
13. Find the minimum sum of products expression using K map for the function $\mathrm{F}=\Sigma \mathrm{m}(6,8,9,10,11,12,13,14)$ and realize the minimized function using only NAND gates.
(or)
14. Simplify using Quine McClusky method $\mathrm{F}=\Sigma \mathrm{m}(0,1,2,3,10,11,12,13,14,15)$.
15. Design a eight bit comparator using logic gates.

> (or)
16. Design a 4bit serial in serial out shift register.
17. Design a synchronous counter which counts in the sequence $0,2,4,6,0,2,4,6, \ldots$ using D flipflop.
(or)
18. Using the excitation tables of S-R and J-K Flip flops, carry out the following conversions
(a) S -R to J-K
(b) S-R to D
(c) $\mathrm{J}-\mathrm{K}$ to D
(d) D to $\mathrm{J}-\mathrm{K}$
19. Explain the working of TTL, ECL and DTL.
(or)
20. Implement the following function using PROM.
$\mathrm{F}=\Sigma \mathrm{m}(1,2,4,7,8,10,11)$

