SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E – EEE

Title of the paper: Digital Systems

Semester: IV
Sub.Code: 6C0038
Time: 3 Hours
Date: 02-05-2008
Session: FN

PART - A

 $(10 \times 2 = 20)$

Answer All the Questions

- 1. What is an alphanumeric code?
- 2. Multiply 1011₂ by 101₂
- 3. What do you mean by parity check?
- 4. Give applications of PLA.
- 5. What will be the maximum number of outputs for a decoder with a 6 bit data word?
- 6. What do you understand by Demultiplexer?
- 7. What is a FF? What are the characteristics of FFs?
- 8. How are shift registers useful?
- 9. What is open collector output TTL? Where is it used?
- 10. What are the different logic families that exhibit low power dissipation?

PART – B
$$(5 \times 12 = 60)$$

Answer All the Questions

11. (a) Prove that:

(i)
$$X + YZ = (X+Y)(X+Z)$$
 (2)

(ii)
$$X.\overline{Y} + Y = X + Y$$
 (2)

	(b) Conver 427 ₈ to decimal, binary and hexa (4)				
	(c) Convert 1A53 ₁₆ to other systems (4) (or)				
12.					
13.	Obtain the minimum SOP and verify using K map. (or)				
14.	(a) Determine to prime implications of				
	$F(A,B,C,D) = \Sigma(3,4,5,7,9,13,14,15) $ (9)				
	(b) What do you understand by variable mapping? (3)				
15.	Design a synchronous counter using JK FF to count to following sequence. 7,4,3,1,5,0,7 (or)				
16.	Design a decimal to BCD priority encoder.				
17.	Design a mod-6 counter using FFS. Draw the state transition diagram of the same.				
1.0	(or)				
18.	Design a mod-6 counter using FFs. Draw the state transition diagram of the same.				
19.	Explain the following logics in detail. (a) HTL (b) CMOS				
20	(Or)				
20.	Write notes on the following: (a) SRAM				
	(b) CCD				
	(C) PAL				