Signature and Name of Invigilator	OMR Sheet No.:
	(To be filled by the Candidate)
1. (Signature)	Roll No.
(Name)	(In figures as per admission card)
2. (Signature)	,
(Name)	(In words)
(rune)	Test Booklet No.

-8908

PAPER-II

ENVIRONMENTAL SCIENCE Time: 11/4 hours [Maximum Marks: 100

Number of Pages in this Booklet: 8

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- This paper consists of fifty multiple-choice type of questions.
- At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the question booklet will be replaced nor any extra time will be
 - (iii) After this verification is over, the Test Booklet Number should be entered in the OMR Sheet and the OMR Sheet Number should be entered on this Test
- 4. Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the oval as indicated below on the correct response against each item.

Example: (A) (B)

where (C) is the correct response.

- Your responses to the items are to be indicated in the Answer Sheet given **inside the Paper I booklet only**. If you mark at any place other than in the ovals in the Answer Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your name or put any mark on any part of the test booklet, except for the space allotted for the relevant entries, which may disclose your identity, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is NO negative marking.

परीक्षार्थियों के लिए निर्देश

Number of Questions in this Booklet: 50

- 1. पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में पचास बहविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका
 - (ii) कवर पष्ट पर छपे निर्देशानसार प्रश्न-पस्तिका के पष्ट तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पुरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ / प्रश्न कम हों या दबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-प्स्तिका की ऋम संख्या OMR पत्रक पर अंकित करें और OMR पत्रक की ऋम संख्या इस प्रश्न-पस्तिका पर
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं। आपको सही उत्तर के दीर्घवृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : (A) (B) (D) जबकि (C) सही उत्तर है।

5. प्रश्नों के उत्तर **केवल प्रश्न पत्र ! के अन्दर दिये गये** उत्तर-पत्रक पर ही अंकित करने हैं। यदि आप उत्तर पत्रक पर दिये गये दीर्घवृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते है, तो उसका मृल्यांकन नहीं होगा।

- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 8. यदि आप उत्तर-पुस्तिका पर अपना नाम या ऐसा कोई भी निशान जिससे आपकी पहचान हो सके, किसी भी भाग पर दर्शाते या अंकित करते हैं तो परीक्षा के लिये अयोग्य घोषित कर दिये जायेंगे।
- 9. आपको परीक्षा समाप्त होने पर उत्तर-पुस्तिका निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद अपने साथ परीक्षा भवन से बाहर न
- 10. केवल नीले / काले बाल प्वाईंट पैन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तर के लिए अंक नहीं काटे जायेंगे।

ENVIRONMENTAL SCIENCE

PAPER – II

Note: This paper contains **fifty** (50) multiple-choice questions, each question carrying **two** (2) marks. Attempt **all** of them.

	tv	wo (2) mark	s. Attempt all of	tnem.						
1.		Assertion (A): Sustainable development is necessary for the survival of human race. Reason (R): Rapid economic growth without environmental concerns cannot be sustained.								
	(A)	(A) is true	and (R) is false							
	(B)	(A) is false	e and (R) is true							
	(C)	Both (A) a	and (R) true but (I	R) is not the	e correct explanation					
	(D)	Both (A) a	and (R) true and (R) is the co	orrect explanation					
2.	The	spatial scale	e of meso scale me	eteorologica	al phenomena is approximately :					
	(A)	2 - 3 km to	o 5 - 6 km	(B)	few km to 100 km					
	(C)	few 100 m	n to few km	(D)	10 mm to 1 km					
3.	The	mass of the	earth's mantle is	approxima	tely:					
	(A)	2×10^{25} gr	m	(B)	$8.1 \times 10^{17} \text{ gm}$					
	(C)	4.05×10^{27}	gm	(D)	$3.1 \times 10^{22} \text{ gm}$					
4.	Whe	en the enviro	onmental lapse rat	e is less tha	in the adiabatic lapse rate, the atmosphe	re				
	(A)	Stable		(B)	Moderately unstable					
	(C)	Highly un	stable	(D)	Neutral					
5.			nydrogen electro espectively are :	de, the pr	essure of hydrogen and hydrogen ic	or				
	(A)	1 atm; 10	m	(B)	10 atm; 1m					
	(C)	1 atm ; 1 r	n	(D)	1 atm; m/10					
6.	Con	sider the fo	llowing statements	s:						
	(i)		n a spontaneous r		reases					
	(ii)	Free energ	gy in a spontaneou	us reaction	increases					
	(iii)	Free energ	gy remains constar	nt when rea	action is in equilibrium					
	(iv)	Free energ	gy increases in a re	everse react	tion					
	Whi		are <i>correct</i> :							
	(A)	(i) and (ii)		(B)	(ii) and (iii)					
	(C)	(i), (iii) an		(D)	none of the above					

J-8908 2

7.	 Assertion (A): Increased level of Arsenic in water is a health hazard. Reason (R): Arsenic has antagonistic behaviour with other metals, its dietary requirement is in trace amount and shows speciation. (A) Both (A) and (R) true (B) Both (A) and (R) true but (R) is not the correct explanation of (A) (C) (A) is true but (R) is false (D) (A) is false but (R) is true 									
8.	(A) 5 (B) 2 (C) 5	$25.5 \times 6.02 \times 10^{23}$ H ₂ O molecules $1.0 \times 6.02 \times 10^{23}$ H ₂ O molecules								
9.	stage : (i) ! (ii) ! (iii) ! (iv) ! Which	: Standing c Net ecosys Gross prod Biomass su	rop biomas tem produc luctivity pe apported pe	s increases ctivity increar r unit of sta er unit of en abination is	ases nding ergy f <i>correc</i>	crop low d	biomass dec ecreases.	reases	nal to climax (ii) and (iii)	
10.	(A) (B) (C) (C)	on (R): Both (A) and Both (A) and (A) is true	The distrib	oution of end true and (R) true but (R) alse	demic	speci rrect e	g richness of es are confin explanation c correct explai	ed to a spof (A)	species. ecific region.	
11.	follow (A)		ical pyrami f numbers	0 1		e a tı Pyra	ecological properties to the properties of the above	yramid sl	which of the nape :	
12.	(A)	es diversity No disturb High distu	ance	y higher in	ecosys (B) (D)	Mod	experiencing erate disturb tic disturban	oance		
13.	(A)	Planktons Micro plar Peri plankt	ıkton	e dimensior	ns in t (B) (D)	Nano	nge of 2 - 20µ o plankton plankton	um are kn	own as :	

14. Assertion (A) : Plants are not auxotrophs.												
		Reason (R): Plants can synthesize all the growth factors they need.										
	(A)											
	(B)	Both (A) and (R) are true but (R)	is no	t the correct explanation of (A)								
	(C)	(A) is false and (R) is true										
	(D)	(A) is true and (R) is false										
15.	Asse	ertion (A): Decomposition of hyd	rocar	bons is favoured in neutral soil.								
		eason (R): Neutral pH favours the greatest populations of micro organisms.										
	(A)	- · · ·	_	1 1								
	(B)	Both (A) and (R) are true and (R)										
	(C)			1								
	(D)	(A) is true (R) is false										
	(2)	(12) 10 11 10 (11) 10 101100										
16.		majority of the antibiotics are derived from actinomycetes come from members of the										
	genu (A)	Nocardia	(B)	Streptomyces								
	(C)	Micromonospora	(D)	Actinomyces								
	` /	,	()	,								
17.	Gern	nany's poison gas in World War I v	vas d	eveloped by :								
	(A)	Knowels (B) Haber		(C) Hitlor (D) Stevenson								
18.	Whi	ch of the following nitrogen fixers i	s fou	nd in philosophers :								
	(A)	Azotobacter	(B)	Clostridium								
	(C)	Klebsiella	(D)	Rhodospirillum								
	()		(2)	2000000								
19.		Thiobacillus and Beggiatoa play an important role in the :										
		water cycle on Earth	(B)	Phosphorus cycle								
	(C)	Sulfur cycle in the soil	(D)	Breakdown of sewage								
20.	One	of the purpose of secondary treat	ment	of industrial waste water and sewage is								
	to:											
	(A)	increase the chlorine content	(B)	reduce the BOD								
	(C)	encourage the formation of PCBs	(D)	discourage ammonification								
21.	AGF	ENDA 21 specifically advocates to c	levise	strategies to :								
	(A)	1 ,		0								
	(21)	Promote economic growth to support increasing human population with adequate environment care										
	(B)		losio	n, resource over use and deteriorating								
	>	environmental quality										
	(C)			nental degradation to promote sustainable								
	(T)	and environmentally sound devel	-									
	(D)	Promote economic development and environmental with a view to reduce poverty										
		and faster human welfare										

J-8908 4

J-8	000				5					P.T.O.
32.	The (A)	bacteria respons Gallionella	sible for (B)	depositior Klebsiella	of iro					cobacter
31.	Whie (A) (C)	ch of the follow Phosphates Ammonia	ing is re	emoved fro	om was (B) (D)	Orga	ter by : anic Compo hates	ounds		
30.	Bulk (A) (C)	ing of sewage s High C : N rat High dissolved	io		(B) (D)	High	with : n C : P ration of the above			
	(A)	6	(B)	$6\sqrt{6}$		(C)	16.5		(D)	$\sqrt{33}$
29.	The	geometric mear	of the	data 2, 4, 2	27 is :					
28.		er unstable atmo d speed (u) at st Δh∝u	ack hei	ght as :	-	•	, ,			k varies with $\Delta h \propto u^{-1/3}$
27.		=4 is the standa standard devia 40		= 2, the valu	_		i-square) s			
	(A)	\sqrt{npq}	(B)	npq		(C)	$n\frac{p}{q}$		(D)	$n\frac{q}{p}$
26.	-	and q are the pro number of trial				failur	e, respectiv	ely in	a trial	and N is the
	rand (A)	lom error term e 0		$+\beta X + \epsilon$, the α/β						$(\beta - \alpha)$
25.		simple regression								ariable X and
	pote	ntial : $CH_4 < N_2O < CO_2 < CH_4 < S$	•	O			Ü		Ü	8
24.	` /	tify the correct	` '			` ,		of the	,	
23.	by tl	er montreal pro ne year : 2030	otocol, d	1 0			e required 2020	to pha		t the HCFCs
	(A) (B) (C) (D)	Excessive grov Excessive inflo Excessive inflo Bright sunligh	vth of f	ishes	tons					

33.	Assertion (A): In electrostatic precipitator corona discharge is used for remove particulate particles from the gas stream. Reason (R): The corona discharge creates an electric field, which makes the particulate down. (A) Both (A) and (R) are true and (R) is the correct explanation of (A) (B) Both (A) and (R) are true but (R) is not the correct explanation of (A) (C) (A) is true but (R) is false (D) (A) is false but (R) is true								s the particles	
34.	Whic	, ,		ects the ozo	ne cor		ation in tr SO ₂	roposph	ere : (D)	CO_2
35.	Assertion (A): While characterizing the size of an aerosol particle aerodyna diameter is used. Reason (R): The aerosol particle may be of irregular shape. (A) Both (A) and (R) are true and (R) is correct explanation of (A) (B) Both (A) and (R) are true but (R) is not the correct explanation of (A) (C) (A) is true but (R) is false (D) (A) is false but (R) is true							·		
36.	The (A) (C)	noise index Backgroun Average n	id noise lev		(B) (D)	Peak	noise lev	el		
37.	Fissio (A) (C)									
38.	comp	ncrease the pounds is us ZnO	sed:	tput from a	а МН	-	wer plant Cs ₂ O ₃			ne following SiO ₂
39.								re useful for s to generate		
40.	The optimum range of wind speeds for wind power generation is: (A) 2 - 4 m/sec (B) 1 - 2 m/sec (C) 4 - 12 m/sec (D) 15 - 20 m/sec									
41.	(A) (C)	sea ferrom Oceanic p Oceanic is	lateau	nodules are	(B) (D)	Ocea	nnic ridge nnic plains			
J-89	908				6					

42.	(A)	cean regime carbonate compensation Precipitation of carbonate Evaporation of carbonate		Dissolution of carbonate
43.	(A) (B) (C)	Change in nucleotide sequence in	muta DNA DNA	gens which may cause. of sperms or eggs, which is inherited
44.	for c (A)	lrawing insurance policies by the c		ct 1991, what is the upper monetary limit s for handling any hazardous substance : Rs. 50 Crores Rs. 1000 Crores
45.	Hosp (A) (B) (C) (D)	pital waste has to be disposed off be handing over to hazardous waste burring 3 meters below the groun burring 10 meters below the grou incineration	man d	agement site
46.		ch of the following industries do n Electroplating Sugar	ot pro (B) (D)	
47.	asses	ssment are associated with : LCA	nalys: (B) (D)	is, Impact assessment and improvement EIA Environmental Impact - Statement
48.	hear	en industry with 'Red' category is to ing or inquiry under the procedure Environmental Health Hazard (E Environmental Litigation (EL) Environmental Management Syst Environmental Impact Assessmen	e calle HH) em (E	EMS)
49.		National Ambient Air Quality (m³) of CO in restricted area is: 2 (B) 4	Stand	ard for 1 hour average concentration (C) 16 (D) 20
50.		ofra-red radiation, the following type Rayleigh scattering Raman scattering	oe of s (B) (D)	ravelengths of either shortwave radiation scattering takes place : Mie scattering Brillouin scattering
		- 0	O o -	

Space For Rough Work

J-8908