The value of C which gives the critical damping in the given circuit is

a) 2F

b) 4F

c) 8F

d) 1F

2 A series RLC circuit resonates at 3 MHz and has 3-dB bandwidth of 10 kHz. The Q of the circuit at resonance

a) 30

b) $\frac{300}{\sqrt{2}}$

c) 300

d) $300\sqrt{2}$

3 The value of resistance R shown in the given figure is

a) 3.5Ω

b) 2.5 Ω

c) 1 Ω

d) 4.5Ω

 4 At 3-dB frequencies, current in the series RLC circuit equal current at resonance multiplied by

a) $\frac{1}{2}$

b) $\frac{1}{\sqrt{2}}$

c) $\frac{1}{4}$

d) $\frac{1}{2\sqrt{2}}$

5 A series RLC circuit resonates at 1000 kHz. At frequency of 995 kHz, the circuit impedance is

a) Resistive

b) minimum

c) Inductive

d) capacitive

6 If each stage had gain of 10dB and noise figure of 10dB, then the overall noise figure of two-stage cascade amplifier will be

a) 10

b) 1.09

c) 1.0

d) 10.9

7 In Sigma delta ADC, high bit accuracy is achieved by

a) Over sampling and noise shaping

b) Over sampling

c) Under sampling

d) None of the above

8 Let s(t) denote the delta function. The value of the integral

$$\int_{-a}^{a} \delta(t) \cos\left(\frac{3t}{2}\right) dt \text{ is}$$

a) 1

b) -1

c) 0

d) $\pi/2$

Consider the compound system shown in the above figure. Its output is equal to the input with a delay of two units. If the transfer function of the first system is given by $H_1(Z) = \frac{Z - 0.5}{Z - 0.8}$, then the

Input $H_1(\mathbb{Z})$ $H_2(\mathbb{Z})$ Output

c)
$$H_2(Z) = \frac{Z^{-1} - 0.2Z^{-3}}{1 - 0.4Z^{-1}}$$

b)
$$H_2(Z) = \frac{Z^{-2} - 0.8Z^{-3}}{1 - 0.5Z^{-1}}$$

d)
$$H_2(Z) = \frac{Z^{-2} - 0.8Z^{-3}}{1 - 0.5Z^{-1}}$$

10 The z - transform of the signal

$$x(n) = \begin{cases} 1, n = -1 \\ 2, n = 0 \\ -1, n = 1 \\ 1, n = 2 \\ 0, otherwise \end{cases}$$

a)
$$z + 2 - z^{-1} + z^{-2}$$

c)
$$z + 2z^2 - z^{-1} + z^{-2}$$

b)
$$z^{-1} + 2 - z + z^2$$

d)
$$z+2-z^{+1}+z^{-2}$$

11 For the circuit shown in the given figure, the voltage V_{AB} is

12 The equivalent capacitance across 'ab' will be

- a) 0.2μF
- b) 0.1μF
- c) 0.5µF
- d) 0
- The transfer function, $T(s) = \frac{s}{s+a}$ is that of a
 - a) Low-pass filter
 - c) High-pass filter

- b) Notch filter
- d) Band-pass filter

A particular current is made up of two components: a 10 A dc and a sinusoidal current of peak value of 1.414 A. The average value of the resultant current is
roomant current is

- a) Zero
- b) 24.14 A
- c) 10 A
- d) 14.14 A

15 By doubling the sampling frequency

- a) Quantisation noise decreases by 3dB
- b) Quantisation noise density decreases by 3dB
- c) Quantisation noise increases by 3dB
- d) Quantisation noise density increases by 3dB
- 16 The output voltage (v₀) of the circuit shown in the given figure is

- a) Zero
- b) 5.7 V
- c) 6.9 V
- d) 12.6 V
- 17 Assuming that only the X and Y logic inputs are available and their complements \overline{X} and \overline{Y} are not available, what is the minimum number of two-input NAND gates requires to implement X \oplus Y?
 - a) 2
- b) 3
- c) 4
- d) 5

18 In the given network of AND and OR gates f can be written as:

- a) $X_0 X_1 X_2 \dots X_n + X_1 X_2 \dots X_n + X_2 X_3 \dots X_n \dots X_n$
- b) $X_0 X_1 + X_2 + X_3 + \dots + X_{n-1} X_n$
- c) $X_0 + X_1 + X_2 + \dots X_n$
- d) $X_0 X_1 X_3 \dots X_{n-1} + X_2 + X_3 + X_5 \dots X_{n-1} + \dots + X_{n-2} + X_{n-1} + X_n$
- 19 A Pulse train with a frequency of 1MHz is counted using a modulo 1024 ripple-counter built with J-K flip-flops. For proper operation of the counter the maximum permissible propagation delay per flip-flop stage is
 - a) 100 n sec
- b) 50 n sec
- c) 20 n sec
- d) 10 n sec
- 20 The A/D converter used in a digital voltmeter could be (1) successive approximation type (2) Flash converter type (3) Dual slope converter type. The correct sequence in the increasing order of their conversion times is
 - a) 1,2,3
- b) 2,1,3
- c) 3,2,1
- d) 3,1,2

	21 7	he resolutio	n of a DIA						
	r	ange. If is	on of a D/A cor	nverter i	s appr	oximatel	y 0.4%	of its full.	Sool-
,	a) An 8-bit con	Neo Han					or its rulls	scale
	C.) Δ 12 hit con	iveiter		b) A 10)-bit conv	erter		
	<u> </u>	A 12 bit con	verter	(3) A 16	bit conv	erter		
	22 In	a matauri					0,10,		,
	22 II	i a micropro	cessor, the re be fetched is	esister w	hich t	nolde the	. add		
	HI.	istruction to	be fetched is			iolas uli	= auure	ess of the	next
	a)	Accumulator	٢	ř) Prog	ram cour	4	•	
	. c)	Stack pointe	Γ	· ·) Inetri	ictor row:	ner		
						uctor regi	ster		
7	23 In	microcomp	uter, WAIT sta	tes are u	ood to			*	
	a)	iviane (i	HE DIOCESSOF W	vait during	- DIA	•			
	b)	Make ti	he processor w	rait during	a DM/	A operati	on		
	c)	Make th	ne processor w	ait uuring	a pow	er interru	ipt proc	essina	
	ď)	Interfac	he processor w	ait during	a pow	er shutdo	own	3	
		menac	e slow peripher	rais to the	∍ proce	essor			
2	4 W								
		1 Ag: n	ollowing stater	ments ar	e corre	ect		•	
		טוו־קמייי יי	N IS LISED TO 61	toro d Lis					
		2. Race-aro	ound condition e 1	n occurs	ina	.l.K flin	fla		
		inputs ar	e 1		,,,,	oak mp.	-liob M	nen both	the
		3. Master-s	lave configura	ation is i	lead ir	. a: a .	_		
		informati	on		iseu II	i ilib-ilol	os to s	tore 2 bits	of ·
		4. A transpa	arent latch con	ncioto of	- D :				
	a) 1	,2 and 3	h) 1 3 and 4	191912 01	a D-ty	pe flip-flo	op	•	
			b) 1,3 and 4	C)	1,2 and	14	d) 2,3	and 4	
25	Hov	w many 1	fc 0.70						
•	3×5	512+7×64+5×	s are pre	sent in	the	binary	repres	sentation	of
	a) 8	· · · · · · · · · · · · · · · · · · ·				· ·		201144011	O1
	۵, ٥		b) 9	c) ⁻	10		d) 11		
26	For	omitton a							
	2)	emittet-conk	oled logic, the	switchin	g spec	ed is ven	v high	hanau	
		ivegative	logic, is used		• .		,9.11	because	
	b)	The trans	sistors are not s	aturated	when c	Conduction	a		
	c)		VUDICU HAHSISH	118 210 116	ed:	onductiff	9		
	d)	Multi-emit	tter transistors a	are used					•
27	The	out put of the	e circuit show	n halow	io				
			·	ii below	15				
		1MHz	Divider	Schr	nitt			Output	!
		scillator	/10 ⁶	trigg			lip		
,	L					"	ор	•	
	a) A	oulse train of	duration 0.5 se	- 1) 4		L			
	c) Ar	Pulse train of	duration 0.5 sed		pulse t	rain of du	ration:	2 sec	
	-/ / /	value train of (Julation 1 sec.	d) A	pulse t	rain of du	ration	5 sec	
28	Cross					- · u		J 360.	
20	Gray	code for nur	nber 7 is						
	a) 11(00	b) 1001	c) 01	10	1)	0.4.0.0		
			•				0100		
29	10 bit	A/D convert	ers, the quant b) 2	ization	**** *				
	a) 1	i	b) 2	a∠auon e	ror is	given by	/ (in pe	rcent)	
	•	•	~, ~	c) 0.1		d)	0.2	•	
4						<u> </u>			
	~~	India	in Chase D		_				
इसरा	वनर्थ	1918181	in Space Rese	arch Or	ganisa	ition		Page 4 ef 1	7

30 For the switch circuit, taking open as 0 and closed as 1, the expression for the circuit is Y.

- a) A+ (B+C) D
- c) A (BC+D)

b) A + BC+ D

d) None of these

31 The Boolean expression for the shaded area in the Venn diagram is

- a) $\bar{x} + \bar{Y} + Z$
- b) $X\overline{Y}Z + \overline{X}YZ$ c) X + Y + Z
- d) $\overline{XYZ} + XY$
- If the memory chip size is 256*1 bits, then the number of chips required to make up 1K bytes of memory is
 - a) 32
- b) 24
- c) 12
- d) 8
- 33 Given the decimal number 19, an eight bit two's complement representation is given by
 - a) 11101110
- b) 11101101
- c) 11101100
- d) None of these

The function shown in the figure when simplified will yield a result with

- a) 2 terms
- b) 4 terms
- c) 7 terms
- d) 16 terms

35 The logic circuit given below converts a binary code Y₁Y₂Y₃ into

- a) Excess -3 code
- c) BCD code

- b) Gray code
- d) Hamming code
- 36 A 4-bit synchronous counter uses flip-flops with propagation delay time of 25 ns each. The maximum possible time required for change of state a) 25 ns
- b) 50 ns
- c) 75 ns
- d) 100 ns
- 37 An electromagnetic wave incident on a perfect conductor is:

- b) Fully transmitted
- c) Partially transmitted
- d) None of these
- 38 The characteristic impedance of a lossless transmission line is given a) $Z = \sqrt{LC}$
- b) $Z = \sqrt{C/L}$
- c) Z = LC
- d) $Z = \sqrt{L/C}$
- A lossless line of 50 ohms is terminated in a load of 100 ohms resistive. a) 1:2
- b) 2:1
- c) 4:1
- d) 1:4
- 40 Which of the following does not exist in waveguides a) TE waves

- b) TM waves
- c) TE waves and TM waves
- d) TEM waves
- Two carriers of 2GHz and 4GHz respectively are frequency modulated by a signal of 10KHz, such that bandwidth of the FM signal in the two cases are same. The peak deviation in the two cases are in the ratio of
 - c) 2:1
- d) 1:1
- 42 The bandwidth required for QPSK modulated channel is a) Twice the BW of BPSK
- b) Equal to BPSK

c) Equal to FSK

d) Half of the BW of BPSK

- 43 Magic T is
 - a) Four part junction

- b) Two part junction
- c) Three part junction d) It is not junction

4	l4 Diplexer is	Diplexer is made of a) Only receive filter b) Only transmit files							
	c) Only circulator		b) Only transmit filterd) Both receive filter and transmit filter						
	P								
4	5 The gain G	of an antenna of eff	ective area A is given by						
	a) $G = \frac{4\pi\lambda}{A^2}$	b) $G = \frac{4\pi A}{\lambda}$	c) $G = \frac{4\pi A}{\lambda^2}$	d) None					
4	If the short circuit and open circuit impedance of a line are 5 and respectively the characteristic impedance is given by								
**	a) 100 12	b) 10 Ω	c) 15 Ω	d) 10000 Ω					
47	The input impedance of short circuited line of length l where $\lambda/4 < l < \lambda/2$, is								
		e b) Inductive	c) Resistive	d) None of these					
48	B Maximum c a) Block Coc c) Turbo Coc		b) Convolution C d) RS Codes	Codes					
49	Noise figure of an amplifier depends on								
	a) Bandwidth	b) Output power	c) Power input `	d) None of the above					
50	BCH code be a) Block Code c) Turbo Cod	es	b) Convolution Codes d) None of the above						
51	When a carrier is phase modulated, with an integrated modulating signal, the resultant is								
	a) Phase mod	dulated signal modulated signal	b) Frequency modulated signal d) QPSK modulated signal						
52	A satellite orbiting in 600 km orbit transmits 5 GHz frequency. The Doppler shift observed at the ground station, when the satellite is over head of the station is								
	a) Zero	b) Maximum	c) Infinity	d) None of the above					
53	A communication channel disturbed by additive white Gaussian noise has a bandwidth of 4kHz and SNR of 15. The highest transmission rate that such a channel can support (in k-bits/sec) is								
	a) 16	b) 1.6	c) 3.2	d) 60					

- A dual directional coupler is connected in a microwave reflectometer measurement setup. The reading of the power meter in the forward direction is 100 mw and in the reverse direction 4 mw. The VSWR is
- 55 Linear amplifier with a gain of 30dB is fed with $1.0 \mu W$ power, the output a) 1.0 W
 - b) 0 dBm
- c) 30dBm
- d) -30dBm
- 10Watts RF power is transmitted with a circular polarized antenna having gain of 10dB. A receiving antenna has vertical polarization. The path loss is 100dB. The receiving signal is a) -83dBW
 - b) -80dBW
- c) -86dBW
- d) +80dBW
- $\vec{p} = 2i 3j, \vec{Q} = -3i + 4j 2k$, and \vec{R} are in equilibrium, if \vec{R} is a) -i - j + 2k b) i - j + 2k
- c) i + j + 2k
- d) i-j-2k
- 58 A rigid body is rotating with constant angular velocity ω about a fixed axis, if v is the velocity of a point of the body, then curl v =a) ω
 - b) ω^2
- c) 2ω
- d) $2\omega^2$

- 59 Laplace transform of sin³ 2t is
 - a) $\frac{24}{(s^2+4)(s^2+36)}$

b) $\frac{1}{(s^2+4)(s^2+64)}$

c) $\frac{48}{(s^2+4)(s^2+36)}$

- d) $\frac{64}{(s^2+4)(s^2+36)}$
- The value of the determinant $\begin{vmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \end{vmatrix}$ is 60
 - a) 0
- b) -1
- c) 1

d) 2

- 61 Solution of $(D^2 + 4)y = \sin^2 x$, is
 - a) $y = A\cos 2x + B\sin 2x \frac{1}{8} \frac{x}{8}\sin 2x$ b) $y = A\cos 2x + B\sin 2x + \frac{1}{8} + \frac{x}{8}\sin 2x$

 - c) $y = A\cos 2x + B\sin 2x \frac{1}{8} + \frac{x}{8}\sin 2x$ d) $y = A\cos 2x + B\sin 2x + \frac{1}{8} \frac{x}{8}\sin 2x$
- The value of k for which the lines 2x+y-1=0,4x+3y-3=0 and 3x + ky - 2 = 0, are concurrent is
 - a) -2
- b) 3
- c) 2
- d) -3

A box contains 5 black and 5 red balls. Two balls are randomly picked one after another from the box, without replacement. The probability for both balls being red is

a)
$$\frac{1}{90}$$

b)
$$\frac{1}{5}$$

c)
$$\frac{19}{90}$$

d)
$$\frac{2}{9}$$

 $x^3 + x \sin x$ is

- a) Constant function
- c) Even function

b) Odd function

d) Periodic function

 $\int \frac{dx}{x\sqrt{x^2-a^2}}$ is

a)
$$\frac{1}{a}\cos ec^{-1}\left(\frac{x}{a}\right)$$

c)
$$\frac{1}{a}\cos^{-1}\left(\frac{x}{a}\right)$$

b)
$$\frac{1}{a}\sin^{-1}\left(\frac{x}{a}\right)$$

d)
$$\frac{1}{a} \sec^{-1} \left(\frac{x}{a} \right)$$

Eigen values of $\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$ are

The approximate equivalent resistance at the points X₁ and X₂ in the circuit shown below

a) 60Ω

b) 40Ω

68 An inductor supplied with 50 V ac with a frequency of 10 kHz passes a current of 7.96 mA. The value of inductor is

- a) 1mH
- b) 10mH
- c) 100mH
- d) 1H

69 In a capacitor, the electric charge is stored in

a) Dielectric

- b) Metal plates
- c) Dielectric as well as metal plates
- d) Neither dielectric nor metal plates

70 Oscillator requires

- a) No feedback
- c) Positive feedback

- b) Negative feedback
- d) Either positive or negative feedback

71 Which loss in a transformer varies significantly with load?

a) Hysteresis loss

b) Eddy current loss

c) Copper loss

d) Core loss

Indian Space Research Organisation

- 72 The resistance of a parallel circuit consisting of two resistors is 12 Ω . One of the resistance wires breaks and the effective resistance becomes 18 Ω . The resistance of the broken wire is
- b) 18 Ω
- c) 36Ω
- d) 24 Ω .
- Time constant of a series R-L circuit equals
 - a) L/R second
- b) LR second
- c) L^2R
- d) LR²
- 74 A dc voltage V is applied at time t=0 to a series RC circuit. The steady
- c) $\frac{V}{\sqrt{R^2 + C^2}}$
- d) Zero

75 The given circuit represents a

- a) Low pass filter
- b) High pass filter c) Band pass
 - filter
- d) Band stop filter

The very low frequency gain of the low pass filter shown in the given figure is

- a) 10 dB
- b) 20 dB
- c) 30 dB
- d) 40 dB

The time-constant of the network shown in the figure is

- a) CR.
- b) 2 CR

78 For the circuit shown below the current / flowing through the circuit will be

- a) 1/2 A
- b) 1 A
- c) 2A
- d) 4A
- 79 When L is doubled and C is halved, the resonance frequency of series tuned circuit becomes
 - a) Doubled
- b) Halved
- c) One quarter
- d) Unchanged
- 80 In a Series resonant circuit, with the increase in L
 - a) Resonant frequency will decrease
 - b) Bandwidth will decrease
 - c) Q will increase
 - d) All of these