P4-Exam.-Oct-09-317

TECEXTO SemICR)

Con. 5914-09.

(REVISED COURSE)

SP-8606

16

Signals & Systems

[Total Marks: 100 2] /12/09

230 to 530

N.B.: (1) Question No. 1 is compulsory,

(2) Answer five question in all.

- (3) All parts of the same questions must be written in continuation.
- (4) Assume suitable data, if required and state them clearly.
- 1. Answer any four :-

(a) A discrete time periodic sequence is given by $x_p(n) = 1 \cos \left[\frac{n\pi}{2}\right]$

- (i) Determine the period of the sequence
- (ii) Sketch the sequence x(n) for the variable n for one period.
- (b) Show that $\int_{-D}^{D} |x(t)| dt < \alpha$ is a sufficient condition for the existence of the

Fourier transform of x(t).

(c) The impulse response of a linear time wariant system is

$$h(n) = \{ 1, 2, 1, -1 \}$$

Determine the response of the sistem to the input signal

$$x(n) = \{ 1, 2, 3, 1 \}$$

- (d) Derive the initial and final value theorem of z transform.
- (e) Determine the direct form I realization for the following transfer function $H(z) = 1 0.5z^{-1} + 0.2z^{-2}$
- 2. (a) Determine the range of values of the parameter for which the following linear timeinvariant systems with impulse response.
 - (i) $h(n) = a^n u(n)$

(b) Consider the analog signal $x_a(t) = 3 \cos 100 \pi t$

(i) Determine the minimum required sampling rate to avoid aliasing.

- (ii) Suppose that the signal is sampled at the rate Fs = 200 Hz. What is the discrete time signal obtained after sampling?
- (iii) Suppose that the signal is sampled at the rate Fs = 75 Hz. What is the discrete time signal obtained after sampling.

20

10

- (b) (i) Find the condition for an LTI DTS described as $y(k+1) \alpha \ y(k) = \alpha \ r(k)$ to be BIBO stable.
 - (ii) Check the BIBO stability of T.F H(z) = $\frac{z-2}{z(z-0.8)}$

Con. 5914-SP-8606-09.

4. (a) Find the Fourier transform of the unit impulse train function $\delta_T(t)$, where $\delta_T(t)$ is 10 defined by

$$\delta_{T}(t) = \dots + \delta(t + 2T) + \delta(t + T) + \delta(t - T) + \delta(t - 2T) + \dots$$

10

10

10

10

- (b) Evaluate the following convolutions -
 - (i) $\delta(t) * \delta(t)$
 - (ii) $x(t) * \delta(t t_0)$
- 5. (a) Find the z transform of -

(i)
$$x(n) = (-1)^n \cos \frac{\pi}{3} n$$
 $u(n)$

- (ii) $x(n) = (n + 1)a^n$.
- (b) Determine a cascade realization for he following transfer function

$$H(z) = \frac{0.7(z^2 - 0.36)}{z^2 + 0.1z - 0.72}$$

6. (a) Find the Fourier series for the function x(t) defined by

$$x(t) = \begin{cases} 0 & \frac{-T}{2} < t < 0 \\ A \operatorname{Sinw}_{0} t & 0 < t < \frac{T}{2} \end{cases}$$

and
$$x(t + T) = x(t)$$
, $w_0 = \frac{2\pi}{T}$

(b) A discrete time system is described by the difference equation, y(k-3) + 2y(k-2) + 3y(k-1) + y(k) = 2u(k). Draw the block diagram representing the system. Generate the state variable description in terms of appropriate A, B, C & D matrices.

- 7. (a) Show that if $x_e(n)$ is an even signal and $x_0(n)$ is an odd signal, then $x_e(n) \cdot x_0(n)$ 20 is an odd signal.
 - (b) Find the Laplace transform of the signal shown below

(c) Find the state transition matrix for

$$A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}$$

(d) Obtain the inverse z transform of a rational function

$$f(z) = \frac{z^2}{z^3 - 1.7z^2 + 0.8z + 0.1}$$