AMIETE - ET (OLD SCHEME) Code: AE09 Subject: ANALOG & DIGITAL ELECTRONICS Time: 3 Hours Max. Marks: 100 Time: 3 Hours DECEMBER 2009 NOTE: There are 9 Questions in all. - Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else. - Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks. - Any required data not explicitly given, may be suitably assumed and stated. ## Q.1 Choose the correct or the best alternative in the following: (2x10) - a. The circuit shown in Fig.1 is - (A) Logarithmic Amplifier. - (B) Anti-logarithmic Amplifier. - (C) Clipper. - (**D**) Clamper. b. In the differentiating circuit given in Fig. 2. 116 1111611011 or 12 18 w - (A) enable the circuit to approach ideal differentiator - **(B)** maintain high input impedance - (C) eliminate high frequency noise spikes - **(D)** prevent oscillations at high frequencies - c. Digital ICs do not use - (A) P-channel MOSFETs - (B) N-channel MOSFETs (C) JFETs - **(D)** N-P-N transistors - d. The number of flip flops required in a decade counter is | | (A) 2
(C) 4 | (B) 3 (D) 10 | | | | |---|--|--|--|--|--| | e. | The number of comparisons carried out in a 4-bit flash-type A/D converter is | | | | | | f. | (A) 16(C) 15The primary switching delay in an the following characteristics of the transfer t | (B) 4 (D) 3 over driven BJT is contributed by which one of cansistor? | | | | | | (A) Storage time(C) Rise time | (B) Fall time(D) Charging time | | | | | g. | g. For the circuit shown below in Fig.3, output F is | | | | | | | (A) $F = 1$
(B) $F = x$
(C) $F = 0$
(D) $F = x$ | Fig.3 | | | | | h. | The basic memory cell of dynamic B | XAM consists of | | | | | | (A) a capacitance(C) a flip flop | (B) a transistor(D) a transistor acting as a capacitor | | | | | i. | Which one of the following is equivalent to AND-OR realization? | | | | | | | (A) NAND-NOR realization(C) NOR-NAND realization | (B) NOR-NOR realization(D) NAND-NAND realization | | | | | j. | A PLA can be used | | | | | | | (A) as a microprocessor.(C) to realize a sequential logic. | (B) as a dynamic memory.(D) to realize a combinational logic. | | | | | Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks. | | | | | | | a. | a. Discuss briefly how op-amp can be used as instrumentation amplifier. (8) | | | | | | b. | Explain following dc imperfection overcome? | ns present in op-amps and how they are | | | | Offset voltage (i) **Q.2** ## (ii) Input bias currents. (8) **(8)** **Q.3** a. Identify the filter and determine its transfer function. | | b. | Explain the working of second-order resonator. Discuss the two possible vexciting this resonator? | ways of (8) | | |---|---|---|-------------------|--| | Q.4 | a. | Draw the block diagram of a counting A/D converter. Explain its operation. (8) | | | | | b. | An 8 bit successive approximation A/D converter has a resolution of 10 analog input is 1.592 V, find the digital output of ADC. | mV. If (8) | | | Q.5 a. Explain the advantage of using Schottky transistors in a TTL gate with to output. Draw the circuit of two input Schottky TTL and explain its feature (8) | | | - | | | | Describe following terms with respect to logic circuits | | | | | | | (i) Noise Margin(ii) Propagation delay(iii) Fan out(iv) Power delay product | (9) | | | 0.6 | | (iv) Power delay product | (8) | | | Q.6 | a. | Explain the operation of Dynamic RAM. Compare its advantages with restatic RAM. | spect to (8) | | | | b. | For each statement indicate whether it pertains to MUX, DEMUX, ENCODECODER | DER or | | | | (i) can be used to steer an input signal to one of several possible outputs. (ii) produces a binary code at output. (iii) was select inputs. (iv) has more inputs than outputs. (v) can be used as a logic function generator. (vi) can be used for parallel to serial conversion. (vii) only one of its outputs can be achieved at one time. (viii) can be used for data routing. | | | | | Q.7 | | | , | | | | b. | What is a ring counter? How it is different from Johnson counter. | (8) | | | Q.8 | Q.8 a. Explain following terms briefly w.r.t. semiconductor memories: | | | | | | | (i) Memory cell (ii) Memory capacity (iii) Access time (iv) Dynamic memory (v) Read operation (vi) Write operation | | | | (vii) Erasable memory | (viii) Static memory | (8) | |-----------------------|----------------------|------------| | | | | b. What is interfacing? How interfacing is done between TTL and ECL family? (8) - **Q.9** Write short notes on the following: - (i) 4 bit binary adder and subtractor. - (ii) CMOS logic circuit. - (iii) Transmission gates. - (iv) NMOS-AND and NOR gates. (4x4 = 16)