Register Number				

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E - E&C/ECE/ETCE

Title of the Paper: Engineering Electromagnetics Max. Marks:80 Time: 3 Hours

Sub. Code:513304-517304-525304-6C0036

Date:12/11/2009 Session:FN

PART - A

 $(10 \times 2 = 20)$

Answer ALL the Questions

- 1. What is electric field intensity?
- 2. State Divergence theorem.
- 3. What is the difference between emf and potential difference?
- 4. What is Jouls's law?
- 5. State Ampere's circuital law.
- 6. Brief about Biot-savart law.
- 7. Write down Maxwell's equations of electrostatics.
- 8. State Faraday's law of induction.
- 9. State the differences between a plane wave and a uniform plane wave.
- What is meant by linear polarization? 10.

PART - B

 $(5 \times 12 = 60)$

Answer All the Questions

11. (a) Obtain the expression for \vec{D} and \vec{E} using Gauss law.

(b) Two point charges of 20nC and -20nC are situated at (1,0,0) and (0,1,0) in free space. Determine the electric field intensity at (0,0,1).

- 12. (a) If $\overrightarrow{F} = (2z+5)\overrightarrow{a}_x + (3x-2)\overrightarrow{a}_y + (4x-1)\overrightarrow{a}_z$, verify stokes theorem over the hemisphere $x^2 + y^2 + z^2 = 4$ and $z \ge 0$ (8)
 - (b) A vector $\overrightarrow{F} = 3x \overrightarrow{a}_x + 0.5y^2 \overrightarrow{a}_y + 0.25x^2y^2 \overrightarrow{a}_z$ is given at a point P (3,4,12) in the rectangular coordinate system. Express this vector in the spherical coordinate system. (4)
- 13. Explain the following
 - (a) Laplace equation
 - (b) Poisson equation
 - (c) Electromotive force.

(or)

- 14. Explain briefly about boundary conditions for current density.
- 15. Explain briefly about Magnetic Materials.

(or)

- 16. With neat sketches, derive the boundary conditions for two different media in the magnetic field.
- 17. Explain briefly about the motional emf and derive an expression for it.

(or)

- 18. Derive the Maxwell's equations in both point form and integral form.
- 19. Derive the Poynting theorem from the Maxwell's equation for the general case.

(or)

20. Derive wave equation in phasor form and obtain the equations of α, β, γ and η