Q. No. 1 - 25 Carry One Mark Each

1.	The $\lim_{x\to 0}$							
	(A) $\frac{2}{3}$		(B)	1	(C)	1/4	(D)	1/2

- 2. Two coins are simultaneously tossed. The probability of two heads simultaneously appearing is (A) $\frac{1}{6}$ (B) $\frac{1}{6}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$
- 3. The order and degree of the differential equation $\frac{d^3y}{dx^3} + 4\sqrt{\left(\frac{dy}{dx}\right)^3 + y^2} = 0$ are respectively
 - (A) 3 and 2 (B) 2 and 3 (C) 3 and 3 (D) 3 and 1
- 4. Two people weighing W each are sitting on a plank of length L floating on water at $\frac{L}{4}$ from either end. Neglecting the weight of the plank, the bending moment at the centre of the plank is
 - (A) $\frac{WL}{8}$ (B) $\frac{WL}{16}$ (C) $\frac{WL}{32}$ (D) zero
- 5. For the truss shown in the figure, the force in the member QR is

- (A) Zero (B) $p/\sqrt{2}$ (C) P (D) 2P2
- 6. The major and minor principal stresses at a point are 3MPa and -3MPa respectively. The maximum shear stress at the point is
- (A) Zero (B) 3MPa (C) 6MPa (D) 9MPa
- 7. The number of independent elastic constants for a linear elastic isotropic and homogeneous material is

 (A) 4 (B) 3 (C) 2 (D) 1
- 8. The effective length of a column of length L fixed against rotation and translation at one end and free at the other end is
 - (A) 0.5 L (B) 0.7 L (C) 1.414 L (D) 2L
- 9. As per India standard code of practice for pre stressed concrete (IS:1343-1980) the minimum grades of concrete to be used for post-tensioned and pre-tensioned structural elements are respectively (A) M20 for both (B) M40 and M30 (C) M15 and M20 (D) M30 and M40
- 10. A solid circular shaft of diameter d and length L is fixed at one end and free at the other end. A torque t is applied at the free end. The shear modulus of the material is G. The angle of twist at three free ends is
 - (A) $\frac{16TL}{\pi d^4G}$ (B) $\frac{32TL}{\pi d^4G}$ (C) $\frac{64TL}{\pi d^4G}$ (D) $\frac{128TL}{\pi d^4G}$
- 11. In a compaction test, G, w, S and e represent the specific gravity, water content, degree of saturation and void ratio of the soil sample, respectively. If γ_w represents the unit weight of water and γ_w represents the dry unit weight of the soil, the equation for zero air voids line is

(A)
$$\gamma_d \frac{G\gamma_w}{1 + Se}$$
 (B) $\gamma_d \frac{G\gamma_w}{1 + GW}$ (C) $\gamma_d \frac{G\gamma_w}{e + \gamma_w S}$ (D) $\gamma_d \frac{GW}{1 + Se}$

12.		grained soil has l sification, the soi CL						s per the	e plastici (D)	ty chart, according to CL-ML
13.	Quick s (A) (B) (C) (D)		of the so epage pr epage pr	il become essure in essure in	soil be	comes e	equal to			it weight of the soil unit weight of the soil
14.	The e-l	og p curve show	n in the	figure is	represe	ntative	of 1	•		
	(A)	Normally conso	lidated o	clay						
	(B)	Over consolidat	ced clay		SIS		Void ratio, e			
	(C)	Under consolida	ated clay	,	10(š			
	(D)	Normally conso	lidated o	dayey sar	nd 🔽		l		log p	
15.	stress	σ_v , σ_h , and σ_v rep and effective ver given by								ective horizontal of earth pressure at
	(A)	$\frac{\sigma_h}{\sigma_v}$	(B)	$\frac{\sigma_h}{\sigma_v}$	5	(C)	$\frac{\sigma_v}{\sigma_h}$		(D)	$\frac{\sigma_{\rm v}}{\sigma_{\rm h}}$
16.		sloped channel i annel are M ₃ , S ₂	s followe	ed by a st M_3,S_3		ped cha (C)	nnel. Th M_2,S_1	ne profile	s of grad	dually varied flow in M_2 , S_2
17.	The flo		ar chann r no-cho nstream	el is subo ke condit section	critical. 1	1	of the o	channel is a downs	reduce	d at a certain section, section
18.	The co Group-I P. Evap Q. Infilt R. Syntl S. Chan	rrect match of G I otranspiration	roup-l		up-II is	Group-l 1. Penn 2. Snyd 3. Musk	II nan meth ler's meth kingum m on's meth P-1, Q	od nod nethod	5-3	
19.	P. Pitot Q. Mand R. Vent S. Anen		roup-I (1. Meas 2. Meas 3. Meas 4. Meas	suring presuring velusuring air suring dis P-2, Q	uses essure in a locity of flo and gas v scharge in -1, R-3, S -1, R-3, S	ow in a p velocity a pipe	ipe
20.	A coast	tal city produces	municipa value an	d low ino	rganic n	SW) wi	th high r	noisture nost effec	content,	, high organic I sustainable option Landfill
21.	Accord	ing to the Noise	Pollution	(Regulat	- tion and	contro	l) Rules,	2000, of	the Mir	nistry of Environment for residential areas
		sed in dB(A) Leg 50 and 40	-	55 and 4		(C)	65 and		(D)	75 and 70

- An air parcel having 40°C temperature moves from ground level to 500m elevation in dry air following 22. the "adiabatic lapse rate". The resulting temperature of air parcel at 500m elevation will be
- 38°C
- (C) 41°C
- 24. As per IRC: 67-2001, a traffic sign indicating the Speed Limit on a road should be of
 - Circular Shape with White Background and Red Border (A)
 - (B) Triangular Shape with White Background and Red Border
 - (C) Triangular Shape with Red Background and White Border
 - (D) Circular Shape with Red Background ad White Border
- 25. The local mean time at a place located in longitude 90° 40'E when the standard time is 6 hours and 30 minutes and the standard meridian is 82° 30'E is
 - 5 hours, 2 minutes and 40 seconds (A)
 - (B) 5 hours, 57 minutes and 20 seconds
 - (C) 6 hours, and 30 minutes
 - 7 hours, 02 minutes and 40 seconds (D)

Q. No. 26 - 51 Carry Two Marks Each

- The solution to the ordinary differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 6y = 0$ is 26.
 - (A) $y = c_1 e^{3x} + c_2 e^{-2x}$ (C) $y = c_1 e^{-3x} + c_2 e^{-2x}$

- The inverse of the matrix is $\begin{bmatrix} 3+2i & -i \\ i & 3-2i \end{bmatrix}$ 27.
 - (A) $\frac{1}{12}\begin{bmatrix} 3+2i & -i \\ i & 3-2i \end{bmatrix}$ (B) $\frac{1}{12}\begin{bmatrix} 3-2i & -i \\ i & 3+2i \end{bmatrix}$ (C) $\frac{1}{14}\begin{bmatrix} 3+2i & -i \\ i & 3-2i \end{bmatrix}$ (D) $\frac{1}{14}\begin{bmatrix} 3-2i & -i \\ i & 3+2i \end{bmatrix}$

- 28. The table below gives values of a function F(x) obtained for values of x at intervals of 0.25.

		-		() /	
Χ	0	0.25	0.5	0.75	1.0
F(x)	1	0.9412	0.8	0.64	0.50

The value of the integral of the function between the limits 0 to 1 using Simpson's rule is

- (A) 0.7854
- (B) 2.3562 (C)
- 3.1416
- 7.5000 (D)
- 29. The partial differential equation that can be formed from

$$z = ax + by + ab$$
 has the form $\left(withp = \frac{\partial z}{\partial x} andq = \frac{\partial z}{\partial y} \right)$

- (A) z=px+qy
- z=px+pq (C) z=px+qy+pq (D)
- A parabolic cable is held between two supports at the same level. They horizontal span between the 30. supports is L. The sag at the mid-span is h. The equation of the parabola is $y = 4h \frac{x^2}{L^2}$, where x is the horizontal coordinate and y is the L vertical coordinate with the origin at the centre of the cable. The expression for the total length of the cable is
 - $\int_{0}^{L} \sqrt{1+64\frac{h^2x^2}{L^4}} dx$

- (C) $\int_{0}^{L/2} \sqrt{1 + 64 \frac{h^2 x^2}{l^4}} dx$
- (B) $2\int_{0}^{L/2} \sqrt{1 + 64 \frac{h^{3} x^{2}}{L^{4}}} dx$ (D) $2\int_{0}^{L/2} \sqrt{1 + 64 \frac{h^{2} x^{2}}{L^{4}}} dx$
- 31. Given a function

 $f(x, y) = 4x^2 + 6y^2 - 8x - 4y + 8$

- The optimal value of f(x, y)
- (A) Is a minimum equal to 10/3
- (B) Is a maximum equal to 10/3
- (C) Is a minimum equal to 8/3
- (D) Is a maximum equal to 8/3

32. A double cover butt riveted joint is used to connect two flat plates of 200mm width and 14mm thickness as show in the figure. There are twelve power driven rivets of 20mm diameter at a pitch of 50mm in both directions on either side of the plate. Two cover plates of 10mm thickness are used. The capacity of the joint in tension considering bearing and shear ONLY, with permissible bearing and shear stresses as 300MPa respectively is

33. Two plates, subjected to direct tension, each of 10mm thickness and having widths of 100mm and 175mm, respectively are to be fillet welded with an overlap of 200mm. Given that the permissible weld stress is 110MPa and the permissible stress in steel is 150MPa, then length of the weld required using the maximum permissible weld size as per IS: 800-1984 is

34. For the simply supported beam of length L, subjected to a uniformly distributed moment M kN-m per unit length as shown in the figure, the bending moment (in kN-m) at the mid-span of the beam is

- 35. A disc of radius r has a hole of radius $\frac{r}{2}$ cut-out as shown. The centroid of the remaining disc (shaded portion) at a radial distance from the centre "O" is
 - (A) $\frac{r}{2}$ (B)

Zero

(A)

(A)

(A)

(C) $\frac{r}{6}$ (D) $\frac{1}{8}$

M/L

(D)

36. A three hinged parabolic arch having a span of 20m and a rise of 5m carries a point load of 10kN at quarter span from the left end as shown in the figure. The resultant reaction at the left support and its inclination with the horizontal are respectively

- (A) 9.01kN and 56.31°
- 7.50kN and 56.31° (C)

- 9.01kN and 33.69° (B)
- 2.50kN and 33.69° (D)
- 37. The vertical stress at point P₁ due to the point load Q on the ground surface as shown in figure is s₂. According to Boussinesq's equation, the vertical stress at point P2 shown in figure will be

- 38. An open ended steel barrel of 1m height and 1m diameter is filled with saturated fine sand having coefficient of permeability of 10⁻² m / s. The barrel stands on a saturated bed of gravel. The time required for the water level in the barrel to drop by 0.75m is
 - 58.9s (A)
- (B) 75s
- (C) 100s
- (D) 150s
- 39. The ultimate load capacity of a 10m long concrete pile of square cross section 500mm x 500mm driven into a homogeneous clay layer having undrained cohesion value of 40kPa is 700kN. If the cross section of the pile is reduced to 250mm x 250mm and the length of the pile is increased to 20m, the ultimate load capacity will be
 - (A) 350kN
- (B) 632.5kN
- (C) 722.5kN
- (D) 1400kN
- 40. For a rectangular channel section, Group I lists geometrical elements and Group II gives proportions for hydraulically efficient section.

	Group I	Group II			
Р	Top width	1	<u>y_e</u> 2		
Q	Perimeter	2	Уe		
R	Hydraulic Radius	3	2y _e		
S	Hydraulic Depth	4	4y _e		

y_e is the follow depth corresponding to hydraulically efficient section. The correct match of Group I with Group II is

- (A) P-2, Q-4, R-1, S-3
- (C)

- (B) P-3,Q-1,R-4,S-2
- P-3,Q-4,R-1,S-2 (D) P-3,O-4,R-2,S-1
- 41. The Froude number of flown in a rectangular channel is 0.8. If the depth of flow is 1.5m, the critical depth is
 - (A) 1.80m
- 1.56m (B)
- (C) 1.36m
- (D) 1.29m

42.	of 2720li center of	tres per mi	nute, the obs re found to b	servations o	f drawdown .5m respect	taken ively. 1	at 10m ar	id 100m	distanc	quifer is
43.	the amou		remaining in		sample after	10day		it k (bas (D)	e e) is 0).345 per day ng/L
44.	I:	A simple pa Comfort to ect option of I is true, II I is true, II	is true, and I is true, and I	is an accepts an importate above sta	otable shape ant consider tements and rect reason	e for suration in their for I	mmit curv n the desig relationshi	es. In of sui	mmit cu	rves.
45.	negotiati widening	ng a horizo	ontal curve or eway of the t	n that road, wo-lane roa	the off-trac	king is	measured approxima	as 0.09		
46.	Consider the following statements in the context of cement concrete pavements. I. Warping stresses in cement concrete pavements are caused by the seasonal variation in temperature. II. Tie bars are generally provided across transverse joints of cement concrete pavements The correct option evaluating the above statements is (A) I: True II: False (B) I: False II: True (C) I: True II: True (D) I: False									
47.	100.0m a reading construct	above sea l of 2.105m.	The elevation (B)	ck sight use ght reading of the plin 101.000m	d to establis with norma th is (C)	sh heig Ily held 99.00	ht of instru staff of 1	ıment is	an inve	erted staff on a recently
Ion cor	ncentration	ns obtained	Commo for a ground		uestions: 4 ple (having			n below		
Ion		Ca2 ⁺	Mg2 ⁺	Na ⁺	HCO ₃ -		SO4 ²⁻	Cl ⁻		
Ion concen (mg/L)		100	6	15	250		45	39		
Atomic	Weight	Ca=40	Mg=24	Na=23	H=1, C=12, O	=16	S=32, O=16	Cl=3	5.5	
48.		rdiness (m 205	g/L as CaCO ₃ (B)) present ir 250	the above (C)	water s 275	sample is	(D)	308	
49.	(A) 2	205	(mg/L as Ca (B)	CO₃) preser 250	nt in the abo (C)	ve wat 275	er sample	is (D)	289	
		Questions ding capac		in a 100 h	ectare farm	is 18cr	m/m. the f	ield is to	be irrig	gated when 50

The moisture holding capacity of the soil in a 100 hectare farm is 18cm/m. the field is to be irrigated when 50 percent of the available moisture in the root zone is depleted. The irrigation water is to be supplied by a pump working for 10hours a day, and water application efficiency is 75%. Details of crops planned for cultivation are as follows:

Crop	Root zone depth (m)	Peak rate of moisture use (mm/day)
X	1.0	5.0
Υ	0.8	4.0

50.	The cap (A)	pacity of irrigation 83litres/sec	n syster (B)	n required 67 liters/	_	ate crop (C)	X in 36 hectare 57 liters/sec	es is (D)	53 liters/sec
51.	The are	ea of crop Y that	can be	irrigated v	vhen the	availal	ble capacity of i	rigation	system is 40 liters /
	(A)	40hectares	(B)	36 hecta	res ((C)	30 hectares	(D)	27 hectares
			Linked	d Answer	Questi	ons 52	2 & 53		
beam is for com and ste	s reinfor npression eel used	ced with 2200m n steel is 50mm.	m ² of ste Assume 250 resp	eel in tens that both ectively. T	ion and tension	628mm and co	n ² of steel in com Empression steel	npressior yield. T	epth of 500mm. the n. The effective cover he grades of concrete to first two decimal
52.	The de (A)	pth of neutral ax 205.30mm	(is is (B)	184.56m	m ((C)	160.91mm	(D)	145.30mm
53.	The mo	oment of resistar 206.00kN-m	nce of th (B)	e section 209.20 k		(C)	236.80 kN-m	(D)	251.90kN-m,
55.		uare footing of si e bearing capaci 1600kPa			as per To			of the a	bove clay, the
			Q. No.	56 – 60	Carry C	ne Ma	rk Each		
56.	Which (A)	of the following cyclic	options i (B)	s closest i indirect		ng to tl (C)	ne word Circuit confusing	ous. (D)	crooked
57.	that be	estion below cor st expresses the ployed: Worke fallow: land wit: jester	relation		ginal pai		unaware: sleep	er	vords. Select the pair
58.		nanage to			ral resou				e following sentence: planet for our conserve
59.		the most appro							
39.	senten				3		ck of seriousnes betrayed		-
60.		and football. Th	en the r (B)	number of 17	persons (playing (C)	g neither hockey 13		10 of them play both tball is: 3
C1	11: (1			5 Carry T				-:	All
61.	January less that i. ii. iii.	y. The age differ an 3 years. Giver Hari's age + Gi The age differe is not the youn There are no tw	ence being the following ta's age ence between gest.	tween any owing fac > Irfan's ween Gita	two sucts: age + Sa and Sair r were to	ccessive aira's ag ra is 1 y	e siblings (that is ge vear. However G rn (oldest first)?	s born or	All were born on 1st ne after another) is the oldest and Saira
	(A)	HSIG	(B)	SGHI	((C)	IGSH	(D)	IHSG

	(A)	20	(B)	18	(C)	16	(D)	15
63.	Chemi exist p	ical agents that o beople in military of the following Modern warfar Chemical agen Use of chemica	do their vestablist statement of the sta	work silently hments whents best substituted in cireful in modes in warfare	y appear to boothink that comes up the movel of the movel	e suited to such hemical agents a eaning of the ab	warfare; are usefu ove pass	of civilian populations. and regretfully, there Il tools for their cause. age:
64.	Giver	digits 2,2,3,3,4,	4,4,4 hc	w many dis	stinct 4 digit r	numbers greater	than 300	00 can be formed?
	(A)	50	(B)	51	(c)	52	(D)	54
65.	If 137	7+276=435 how	much is	731+672?				
	(1)	53 4	(B)	1/03	(C)	1622	(D)	1512

workers, how long will it take to build the wall?

5 skilled workers can build a wall in 20days: 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled

62.

End of Question Paper