NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) If $\mathbf{a}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}, \mathbf{b}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and $\mathbf{c}=-\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, then determine the vector a. $(\mathbf{b} \times \mathbf{c})$.
b) Express $z=\frac{\sqrt{2}+\sqrt{6} i}{(\sqrt{3}+i)(\sqrt{2}-\sqrt{6} i)}$ in the form $x+i y$ where x and y are real numbers
c) Find the characteristic roots of the matrix

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

d) Find the area of the region bounded by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and above the x-axis.
e) Find $\lim _{x \rightarrow \infty}\left(\frac{x+5}{x+1}\right)^{x+3}$
f) Test the convergence of the series

$$
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\cdots
$$

g) Find the equation of the hyperbola whose eccentricity is $\sqrt{2}$ and distance between foci is 16 .
2.
a) Find a vector \mathbf{b} such that $\mathbf{a} \cdot \mathbf{b}=1, \mathbf{a} \times \mathbf{b}=\mathbf{j}-\mathbf{k}$ and $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
b) Given

$$
\left|\begin{array}{ccc}
b^{2}+c^{2} & a b & a c \\
b a & c^{2}+a^{2} & b c \\
c a & c b & b^{2}+a^{2}
\end{array}\right|=\left|\begin{array}{ccc}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right|=K a^{2} b^{2} c^{2},
$$

find K .
c) If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$, then find the eigen values of $\mathbf{B}=\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}$, where \mathbf{I} is the identity matrix of order 3 .
(6+6+6)
3.
a) If $1, w, w^{2}$ are cube roots of unity, then find the roots of $(z-1)^{3}+8=0$.
b) Find the rank of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & 5 \\
-1 & 2 & 5 \\
3 & 2 & 9
\end{array}\right]
$$

c) If one of the roots of

$$
A(x)=\left|\begin{array}{ccc}
7 & 6 & x \\
2 & x & 2 \\
x & 3 & 7
\end{array}\right|=0
$$

is $x=-9$, then find the other roots.
(6+6+6)
4.
a) How will you classify the following curves in terms of parabola, ellipse or hyperbola?
i) $17 x^{2}+12 x y+8 y^{2}-46 x-28 y+33=0$,
ii) $\quad x^{2}-5 x y+y^{2}+8 x-20 y+15=0$?
b) Put the equation $9 x^{2}+25 y^{2}=225$ in the standard form and sketch it. Clearly indicate center, vertices, foci, distance between the center and the focus.
c) Find the equation of the tangent to a parabola $y^{2}=4 a x$ at the given point $\left(x_{1}, y_{1}\right)$ on it. What can you say about the tangent at $(0,0)$?
(6+6+6)
5.
a) Evaluate $\quad I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
b) Find the length of the portion of the tangent to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ intercepted between coordinate axes.
c) Evaluate

$$
\begin{equation*}
\lim _{x \rightarrow 0}(\operatorname{Cos} x)^{\frac{1}{x^{2}}} \tag{6+6+6}
\end{equation*}
$$

6.

a) Evaluate $\int_{-1}^{1} \frac{3+\sin ^{3} x}{1+x^{2}} d x$.
b) Find the minimum value of
$f(x)=\sin ^{4} x+\cos ^{4} x$.
c) Find all the asymptotes to the curve
$(2 x+3) y=(x-1)^{2}$.
(6+6+6)
7.
a) If $x=\cos \theta+\theta \sin \theta, y=\sin \theta-\theta \cos \theta$, then show that

$$
\frac{d y}{d x}=\tan \theta .
$$

Also find $\frac{d^{2} y}{d x^{2}}$.
b) Using Lagrange mean value theorem show that $e^{x}>1+x, x>0$.
c) Test the convergence of the series

$$
\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+\cdots
$$

for all x.

