B3.2–R3 BASIC MATHEMATICS

NOTE	
1 2	
Time: 3 HoursTotal Marks: 100	
1. a)	If $\mathbf{a} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, then determine the vector $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.
b)	Express $z = \frac{\sqrt{2} + \sqrt{6}i}{(\sqrt{3} + i)(\sqrt{2} - \sqrt{6}i)}$ in the form $x + iy$ where x and y are real numbers
C)	Find the characteristic roots of the matrix $ \begin{bmatrix} 2 & 2 & I \\ I & 3 & I \\ I & 2 & 2 \end{bmatrix} $
	r^2 v^2

Find the area of the region bounded by $\frac{x}{a^2} + \frac{y}{b^2} = 1$ and above the x-axis. d)

e) Find
$$\lim_{x \to \infty} \left(\frac{x+5}{x+1} \right)^{x+3}$$

Test the convergence of the series f)

$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \cdots$$

Find the equation of the hyperbola whose eccentricity is $\sqrt{2}$ and distance between g) foci is 16.

(7x4)

2.

a) Find a vector **b** such that
$$\mathbf{a} \cdot \mathbf{b} = 1$$
, $\mathbf{a} \times \mathbf{b} = \mathbf{j} - \mathbf{k}$ and $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$.

Given b)

 $\begin{vmatrix} b^{2} + c^{2} & ab & ac \\ ba & c^{2} + a^{2} & bc \\ ca & cb & b^{2} + a^{2} \end{vmatrix} = \begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix} = Ka^{2}b^{2}c^{2},$

find K.

If $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, then find the eigen values of **B** = **I** + **A** + **A**², where **I** is the identity c) matrix of order 3.

(6+6+6)

3.

If 1, w, w^2 are cube roots of unity, then find the roots of $(z - 1)^3 + 8 = 0$. a)

b) Find the rank of the matrix

$$A = \begin{bmatrix} 2 & 1 & 5 \\ -1 & 2 & 5 \\ 3 & 2 & 9 \end{bmatrix}$$

c) If one of the roots of

$$A(x) = \begin{vmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7 \end{vmatrix} = 0$$

is x = -9, then find the other roots.

- 4.
- a) How will you classify the following curves in terms of parabola, ellipse or hyperbola?
 - i) $17x^2+12xy+8y^2-46x-28y+33=0$,
 - ii) $x^2-5xy+y^2+8x-20y+15=0?$
- b) Put the equation $9x^2+25y^2=225$ in the standard form and sketch it. Clearly indicate center, vertices, foci, distance between the center and the focus.
- c) Find the equation of the tangent to a parabola $y^2=4ax$ at the given point (x_1,y_1) on it. What can you say about the tangent at (0,0)?

(6+6+6)

(6+6+6)

5.

- a) Evaluate $I = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$
- b) Find the length of the portion of the tangent to the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ intercepted between coordinate axes.

c) Evaluate
$$\lim_{x \to 0} (\cos x) \frac{1}{x^2}$$
.

6.

a) Evaluate
$$\int_{-1}^{1} \frac{3 + \sin^3 x}{1 + x^2} dx$$

b) Find the minimum value of
$$f(x) = \sin^4 x + \cos^4 x$$
.

c) Find all the asymptotes to the curve $(2x + 3)y = (x - 1)^2$.

(6+6+6)

(6+6+6)

a) If $x = \cos \theta + \theta \sin \theta$, $y = \sin \theta - \theta \cos \theta$, then show that

$$\frac{dy}{dx} = tan\theta.$$

Also find $\frac{d^2y}{dx^2}$.

- b) Using Lagrange mean value theorem show that $e^x > 1 + x$, x > 0.
- c) Test the convergence of the series

$$\frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots$$

for all x.