NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) Find $|z|$ when

$$
z=\frac{(2-3 i)(1+i)}{2+i}
$$

b) Evaluate the determinant

$$
\Delta=\left|\begin{array}{ccc}
\cos \mathrm{x} & 0 & -\sin \mathrm{x} \\
0 & 1 & 0 \\
\sin \mathrm{x} & 0 & \cos \mathrm{x}
\end{array}\right|
$$

c) Find

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}
$$

d) Differentiate $\sin \left(\cos x^{2}\right)$ with respect to x.
e) Evaluate

$$
I=\int \frac{d x}{\sqrt{25-16 x^{2}}}
$$

f) Test the convergence of the following series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}
$$

g) Find the radius of the circle

$$
x^{2}+y^{2}+8 x+10 y-8=0
$$

2.

a) Find the rank of the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 2 \\
2 & 6 & 5
\end{array}\right]
$$

b) Solve the following system of equations by Cramer's rule:

$$
\begin{array}{ll}
3 x-2 y+3 z & =8 \\
2 x+y-z & =1 \\
4 x-3 y+2 z & =4
\end{array}
$$

c) For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$,
show that $A^{3}-6 A^{2}+5 A+11 I=O$, where I is $3 x 3$ identity matrix and O is (3x3) zero matrix. Hence find A^{-1}.
3.
a) Find the area enclosed by the parabola $a y=3\left(a^{2}-x^{2}\right)$ and the x-axis.
b) Discuss the continuity of the function

$$
f(x)=\left\{\begin{array}{ccc}
2 x-1 & \text { if } & x<2 \\
\frac{3 x}{2} & \text { if } & x \geq 2
\end{array}\right.
$$

c) State Rolle's theorem. Hence verify Rolle's theorem for the function $f(x)=x(x-1)^{2}$ in the interval $[0,1]$.
4.
a) Test the convergence of the series

$$
2 x+\frac{3 x^{2}}{8}+\frac{4 x^{3}}{27}+\ldots+\frac{(n+1) x^{n}}{n^{3}}+\ldots
$$

b) Find the value of

$$
\mathrm{I}-\frac{\pi}{4}
$$

where

$$
I=\int_{0}^{\pi / 2} \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x
$$

c) Evaluate $\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)}$
5.
a) If $(x+i y)^{1 / 3}=a+i b$, prove that
$\frac{x}{a}+\frac{y}{b}=4\left(a^{2}-b^{2}\right)$
b) Determine the value of λ so that the vectors
$\overline{\mathbf{a}}=\mathbf{2 i}-\lambda \mathbf{j}+\mathbf{k}$ and $\overline{\mathbf{b}}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ are perpendicular to each other.
c) Find x if $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion $(2+\mathrm{x})^{50}$ are equal.
(6+6+6)
6.
a) If $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$, show that

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\cot \frac{\theta}{2} \text {. Compute } \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}} \text { at } \theta=\frac{\pi}{2} \text {. }
$$

b) Determine the value of k, if

$$
\lim _{x \rightarrow 1}\left(\frac{x^{4}-1}{x-1}\right)=\lim _{x \rightarrow k}\left(\frac{x^{3}-k^{3}}{x^{2}-k^{2}}\right)
$$

c) Given $y=a \sin x+b \cos x$, obtain the value of

$$
\begin{equation*}
y^{2}+\left(\frac{d y}{d x}\right)^{2}-a^{2}-b^{2} \tag{6+6+6}
\end{equation*}
$$

7.

a) Find the foci, vertices and the eccentricity of the ellipse $16 x^{2}+25 y^{2}=400$.
b) Obtain the equation of the hyperbola with foci $(0, \pm 3)$ and vertices $\left(0, \pm \frac{\sqrt{11}}{2}\right)$.
c) Determine the equation of the straight line passing through the point $(-2,-3)$ and inclined at 60° to the line $x+\sqrt{3 y}=2$.

