

## KOLKATA

## **WB-JEE - 2009**

# PHYSICS & CHEMISTRY QUESTIONS & ANSWERS

| 1. | One Kg of copper is drawn | into a wire | of 1mm diameter ar | nd a wire | e of 2 mm diamete | er. The res | sistance of the two | wires will be in the |
|----|---------------------------|-------------|--------------------|-----------|-------------------|-------------|---------------------|----------------------|
|    | ratio                     |             |                    |           |                   |             |                     |                      |

Ans:(C)

**Hints:** Mass = 
$$(\pi r_1^2 \ell_1) \sigma$$
 (Ist wire)

Mass = 
$$(\pi r_1^2 \ell_2)\sigma$$
 (2nd wire)

$$(\pi r_1^2 \ell_1) \sigma = (\pi r_2^2 \ell_2) \sigma$$

$$\frac{\ell_1}{\ell_2} = \left(\frac{r_2}{r_1}\right)^2$$

$$\frac{R_1}{R_2} = \frac{\rho \frac{\ell_1}{A_1}}{\rho \frac{\ell_2}{A_2}} = \frac{\ell_1}{\ell_2} \times \frac{A_2}{A_1} = \frac{\ell_1}{\ell_2} \times \left(\frac{r_2}{r_1}\right)^2$$

$$= \left(\frac{r_2}{r_1}\right)^4$$

2. An electrical cable having a resistance of 
$$0.2 \Omega$$
 delivers 10kw at 200V D.C. to a factory. What is the efficiency of transmission?

Ans: (D)

**Hints:** 
$$P = VI \Rightarrow I = \frac{10 \times 10^3}{200} = 50A$$
, Power loss =  $(50)^2 (0.2) = 500W$ 

Efficiency = 
$$\frac{10000 \times 100}{10000 + 500} = 95.23\%$$

| 3 | A wire of resistance 5 $\Omega$ | is drawn out so that its n | ew length is 3 times it | s original length Wha | at is the reistance o | of the new wire? |
|---|---------------------------------|----------------------------|-------------------------|-----------------------|-----------------------|------------------|

(B) 
$$15\Omega$$

(C) 
$$5/3 \Omega$$

(D) 
$$5\Omega$$

Ans: (A)

Hints: 
$$\left(\frac{r_1}{r_2}\right)^2 = \left(\frac{\ell_2}{\ell_1}\right) = \frac{3\ell}{\ell} = 3$$

$$\left(\frac{R_2}{R_1}\right) = \frac{\ell_2}{\ell_1} \times \frac{A_1}{A_2} = 3 \times \left(\frac{r_1}{r_2}\right)^2 = 3 \times 3 \Rightarrow R_2 = 45$$

4. Two identical cells each of emf E and internal resistance r are connected in parallel with an external resistance R. To get maximum power developed across R, the value of R is

(A) 
$$R = r/2$$

(B) 
$$R = r$$

(C) 
$$R = r/3$$

(D) 
$$R = 2r$$

Ans: (A)

**Hints:** 
$$R_{eq} = \frac{r}{2} + R = \frac{r + 2R}{2}$$

$$I = \frac{2E}{r + 2R}$$

For max. power consumption. I should be max. So denominator should be min. for that

$$r+2R = \left(\sqrt{r} - \sqrt{2R}\right)^2 + 2\sqrt{r}\sqrt{2R} \Rightarrow \sqrt{r} - \sqrt{2R} = 0 \Rightarrow R = r/2$$

5. To write the decimal number 37 in binary, how many binary digits are required?

**Ans**: (B)

Hints:

$$\begin{array}{c|ccccc}
2 & 37 & 1 \\
\hline
2 & 18 & 0 \\
\hline
2 & 9 & 1 \\
\hline
2 & 4 & 0 \\
\hline
2 & 2 & 0
\end{array}$$

$$(100101) \Rightarrow 6$$
 digits

6. A junction diode has a resistance of 25  $\Omega$  when forward biased and 2500  $\Omega$  when reverse biased. The current in the diode, for the arrangement shown will be



(A) 
$$\frac{1}{15}$$
 A

(B) 
$$\frac{1}{7}$$
A

(C) 
$$\frac{1}{25}$$
 A

(D) 
$$\frac{1}{180}$$
 A

Ans: (B)

**Hints**: 
$$R_{eq} = 25 + 10 = 35\Omega$$

Because diode is forward biased. So  $I = \frac{V}{R_{eq}} = \frac{5}{35} = \frac{1}{7} A$ 

| 7. | If the electron in a hydrogen atom jumps from an orbit with level $n_1 = 2$ to an orbit with level $n_2 = 1$ the emitted radiation has a |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
|    | wavelength given by                                                                                                                      |

(A) 
$$\lambda = 5/3R$$

(B) 
$$\lambda = 4/3 \text{ R}$$

(C) 
$$\lambda = R/4$$

(D) 
$$\lambda = 3R/4$$

Ans: (B)

**Hints:** 
$$\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = R \left( \frac{1}{1^2} - \frac{1}{2^2} \right) = \frac{3R}{4}$$

$$\Rightarrow \lambda = \frac{4}{3R}$$

What is the particle x in the following nuclear reaction:

$${}_{4}^{9}\text{Be} + {}_{2}^{4}\text{He} \rightarrow {}_{6}^{12}\text{C} + \text{x}$$

(A) electron

(B) proton

Photon

Neutron

Ans: (D)

**Hints**: 
$${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C + {}_{0}^{1}X$$

Hence X represents neutron  $\binom{1}{0}n$ 

An alternating current of rms value 10 A is passed through a 12  $\Omega$  resistor. The maximum potential difference across the resistor

(A) 20V

Ans:(C)

**Hints**:  $I_{rms} = 10A$ 

$$I_{rms} = \frac{I_0}{\sqrt{2}} \Longrightarrow I_0 = \sqrt{2} \times 10 = 10\sqrt{2}$$

Max. P.D. = 
$$\sqrt{2} \times 10 \times 12 = 120 \times 1.414 = 169.68 \ V$$

Which of the following relation represent Biot-Savart's law? 10.

(A) 
$$d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r}$$
 (B)  $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \hat{r}}{r^3}$  (C)  $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^3}$  (D)  $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^4}$ 

(B) 
$$d\overline{B} = \frac{\mu_0}{4\pi} \frac{dl \times \hat{r}}{r^3}$$

(C) 
$$d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^3}$$

(D) 
$$d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{d}l \times \overline{r}}{r^4}$$

**Hints:** 
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{\ell} \times \vec{r})}{r^3}$$

Note: - In question paper current (I) is missing

 $\vec{A}$  and  $\vec{B}$  are two vectors given by  $\vec{A} = 2\hat{i} + 3\hat{j}$  and  $\vec{B} = \hat{i} + \hat{j}$ . The magnitude of the component of  $\vec{A}$  along  $\vec{B}$  is

(A) 
$$\frac{5}{\sqrt{2}}$$

(B) 
$$\frac{3}{\sqrt{2}}$$

(C) 
$$\frac{7}{\sqrt{2}}$$

$$(D)\frac{1}{\sqrt{2}}$$

Ans: (A)

**Hints**: Magnitude of components of 
$$\vec{A}$$
 along  $\vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} = \frac{(2\hat{i} + 3\hat{j})(\hat{i} + \hat{j})}{\sqrt{2}} = \frac{5}{\sqrt{2}}$ 



#### KOLKATA

- 12. Given  $\vec{C} = \vec{A} \times \vec{B}$  and  $\vec{D} = \vec{B} \times \vec{A}$ . What is the angle between  $\vec{C}$  and  $\vec{D}$ ?
  - (A) 30°
- (B) 60°

(C) 90°

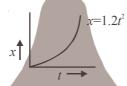
(D) 180°

Ans: (D)

**Hints**:  $\vec{C}$  and  $\vec{D}$  are antiparellel since  $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$ 

- 13. The acceleration 'a' (in  $ms^{-2}$ ) of a body, starting from rest varies with time t (in s) following the equation a = 3t + 4The velocity of the body at time t = 2s will be
  - (A)  $10 \, \text{ms}^{-1}$
- (B)  $18 \,\mathrm{ms^{-1}}$
- (C)  $14 \text{ ms}^{-1}$
- (D) 26 ms<sup>-1</sup>

Ans:(C)


**Hints**: a = 3t + 4

$$\frac{dV}{dt} = 3t + 4$$

$$\int_0^V dV = \int_0^t (3t+4)dt$$

$$V = \frac{3t^2}{2} + 4t = \frac{12}{2} + 8 = 14 \text{ m/s}$$

14. Figure below shows the distance-time graph of the motion of a car. If follows from the graph that the car is



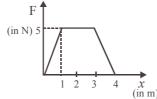
- (A) at rest
- (C) in non-uniform acceleration
- A == (D)

Hints: Slope is increasing with constant rate, i.e motion is uniformaly accelerated

$$x = 1.2t^2 \implies v = 2.4t \implies a = 2.4 \text{ m/s}^2$$

- 15. Two particles have masses m & 4m and their kinetic energies are in the ratio 2: 1. What is the ratio of their linear momenta?
  - (A)  $\frac{1}{\sqrt{2}}$ Ans: (A)
- (B)  $\frac{1}{2}$

(C)  $\frac{1}{4}$ 


in uniform motion

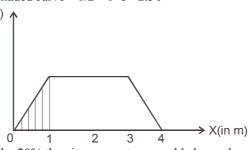
uniformly accelerated

(D)  $\frac{1}{16}$ 

Hints:  $\frac{KE_1}{KE_2} = \frac{\frac{p_1^2}{2m}}{\frac{p_2^2}{2 \times 4m}} = \frac{2}{1} \Rightarrow \frac{p_1}{p_2} = \frac{1}{\sqrt{2}}$ 

16. The force F acting on a particle moving in a straight line is shown below. What is the work done by the force on the particle in the 1<sup>st</sup> meter of the trajectory?




- (A) 5 J
- (B) 10 J

- (C) 15 J
- (D) 2.5 J

KOLKATA

Ans: (D)

**Hints:** Work done in 1 meter = area of shaded curve =  $1/2 \times 1 \times 5 = 2.5 \text{ J}$ 



17. If the kinetic energy of a body changes by 20% then its momentum would change by –

(A) 20%

(B) 24%

(C) 40%

(D) 44%

Ans: (No answer matching)

Hints: 
$$\frac{\frac{p_f^2}{2m} - \frac{p_i^2}{2m}}{\frac{p_i^2}{2m}} \times 100 = 20$$

$$\Rightarrow \frac{p_f}{p_i} = \sqrt{1.2} = 1.095 \Rightarrow \frac{p_f - p_i}{p_i} = 0.095$$

Therefore % increase = 9.5%

18. A bullet is fired with a velocity u making an angle of 60° with the horizontal plane. The horizontal component of the velocity of the bullet when it reaches the maximum height is

(A) u

(B) 0

(C)  $\frac{\sqrt{3u}}{2}$ 

(D)  $\frac{\mathrm{u}}{2}$ 

Ans: (D)

Hints: Horizontal velocity would be constant so the value of velocity at the highest point will be u/2

19. A particle is projected at 60° to the horizontal with a kinetic energy K. The kinetic energy at the highest point is

(A) K

(B) zero

(C)  $\frac{K}{4}$ 

(D)  $\frac{K}{2}$ 

Ans: (C)

**Hints**: At highest point kinetic energy = 1/2m (v cos  $60^{\circ}$ )<sup>2</sup> =  $1/4 \times 1/2$ m v<sup>2</sup> = K/4

20. The poisson's ratio of a material is 0.5. If a force is applied to a wire of this material, there is a decrease in the cross-sectional area by 4%. The percentage increase in the length is :

(A) 1%

(B) 2%

(C) 2.5%

(D) 4%

Ans:(D)

**Hints:** Poisson ratio = 0.5

Therefore density is constant hence change in volume is zero we have

 $V = A \times \ell = constant$ 

$$\log V = \log A + \log^{4} \ell$$
 or  $\frac{dA}{A} + \frac{d\ell}{\ell} = 0 \Rightarrow \frac{d\ell}{\ell} = -\frac{dA}{A}$ 

That is 4%

| 21. | Two spheres of | equal masses | but radii r <sub>1</sub> a | nd r, are a | allowed to f | fall in a lic | quid of infi | inite column. | The ratio | of their | terminal |
|-----|----------------|--------------|----------------------------|-------------|--------------|---------------|--------------|---------------|-----------|----------|----------|
|     | velocities is  |              | •                          | -           |              |               |              |               |           |          |          |

(A) 1

(B)  $r_1:r_2$ 

(C)  $r_2 : r_1$ 

(D)  $\sqrt{r_1}:\sqrt{r_2}$ 

Ans: (Data incomplete)

**Hints**: We have  $v_T = \frac{2r^2(\sigma - \rho)g}{9n}$ 

 $\frac{V_1}{V_2} = \left(\frac{r_1}{r_2}\right)^2 \frac{(\sigma_1 - \rho)}{(\sigma_2 - \rho)}; \text{ given } m_1 = m_2 \Longrightarrow \left(\frac{r_1}{r_2}\right)^3 = \frac{\sigma_2}{\sigma_1}$ 

Two massless springs of force constants K<sub>1</sub> and K<sub>2</sub> are joined end to end. The resultant force constant K of the system is

(A)  $K = \frac{K_1 + K_2}{K_1 K_2}$  (B)  $K = \frac{K_1 - K_2}{K_1 K_2}$  (C)  $K = \frac{K_1 K_2}{K_1 + K_2}$  (D)  $K = \frac{K_1 K_2}{K_1 - K_2}$ 

Ans: (C)

**Hints:** In series  $K_{eff} = \frac{K_1 K_2}{K_1 + K_2}$ 

A spring of force constant k is cut into two equal halves. The force constant of each half is

(A)  $\frac{k}{\sqrt{2}}$ 

(B) k

(D) 2k

Ans: (D)

Hints: As

K / = constant

K' = 2K

24. Two rods of equal length and diameter have thermal conductivities 3 and 4 units respectively. If they are joined in series, the thermal conductivity of the combination would be

(A) 3.43

(B) 3.5 (C) 3.4

(D) 3.34

Ans: (A)

**Hints:** In series  $R = R_1 + R_2$ 

 $\frac{2\ell}{K_{\text{off}}A} = \frac{\ell}{K_1A} + \frac{\ell}{K_2A}$ 

 $K_{eff} = \frac{24}{7} = 3.43$ 

19 g of water at 30° C and 5 g of ice at – 20° C are mixed together in a calorimeter. What is the final temperature of the mixture? Given specific heat of ice = 0.5 cal g<sup>-1</sup>(°C)<sup>-1</sup> and latent heat of fusion of ice = 80 cal g<sup>-1</sup>

(A) 0°C

(B)  $-5^{\circ}$  C

(C) 5°C

(D) 10°C

Ans: (C)

**Hints:**  $5 \times .5 \times 20 + 5 \times 80 + 5t = 19 \times 1 \times (30 - t)$ 

 $t = 5^{\circ}C$ 

- It is difficult to cook rice in an open vessel by boiling it at high altitudes because of
  - (A) low boiling point and high pressure

high boiling point and low pressure

(C) low boiling point and low pressure

high boiling point and high pressure

Ans: (C)

**Hints:** At high altitude pressure is low and boiling point also low

27. The height of a waterfall is 50 m. If  $g = 9.8 \text{ ms}^{-2}$  the difference between the temperature at the top and the bottom of the waterfall

(A) 1.17°C

(B) 2.17° C

(C) 0.117° C

(D) 1.43° C

Ans: (C)

**Hints:**  $\frac{mgh}{t} = ms\Delta t \Rightarrow \Delta t = 0.117^{\circ}C$ 

28. The distance between an object and a divergent lens is m times the focal length of the lens. The linear magnification produced by the lens is

(A) m

m+1

Ans: (D)

Hints: u = -mf

$$\frac{1}{v} - \frac{1}{(-mf)} = -\frac{1}{f} \Rightarrow$$

$$\frac{1}{v} - \frac{1}{(-mf)} = -\frac{1}{f} \implies \frac{1}{v} = -\frac{1}{f} \left(1 + \frac{1}{m}\right) \Rightarrow -\frac{v}{u} = \left(\frac{1}{1+m}\right)$$

A 2.0 cm object is placed 15 cm in front of a concave mirror of focal length 10 cm. What is the size and nature of the image?

(A) 4 cm. real

(B) 4 cm, virtual

(C) 1.0 cm, real

None

Ans: (A)

**Hints:** 
$$\frac{1}{v} - \frac{1}{15} = \frac{1}{-10} \implies v = -30$$
 cm

$$m = \frac{-30}{-15} = 2$$
, image size = 4 cm

30. A beam of monochromatic blue light of wavelength 4200 Å in air travels in water of refractive index 4/3. Its wavelength in water

(A) 4200 Å

5800 Å (B)

(C) 4150 Å

(D) 3150 Å

Ans: (D)

**Hints:** In water 
$$\lambda = \frac{4200}{\frac{4}{3}} = 3150 \text{ Å}$$

31. Two identical light waves, propagating in the same direction, have a phase difference  $\delta$ . After they superpose the intensity of the resulting wave will be proportional to

(A)  $\cos \delta$ 

(B)  $\cos(\delta/2)$ 

(C)  $\cos^2(\delta/2)$ 

(D)  $\cos^2\delta$ 

Ans: (C)

**Hints:** 
$$I = 4I_0 \cos^2\left(\frac{\delta}{2}\right) \Rightarrow I \propto \cos^2\left(\frac{\delta}{2}\right)$$



#### KOLKATA

| <i>32</i> . | The equation of state for | n moles of an ideal gas is PV | r = nRT, where R is a constant. The | e SI unit for K is |
|-------------|---------------------------|-------------------------------|-------------------------------------|--------------------|
|             | (A) IV-1 per molecule     | (D) IV-1 mol-1                | $(C)$ I $V \alpha^{-1} V^{-1}$      | (D) IV-1 a         |

(A) JK<sup>-1</sup> per molecule

Ans: (B)

Hints: JK<sup>-1</sup> mol<sup>-1</sup>

At a certain place, the horizontal component of earth's magnetic field is  $\sqrt{3}$  times the vertical component. The angle of dip at

(A) 30°

(B)

(C) 45°

(D) 90°

Ans: (A)

**Hints:**  $\tan \theta = \frac{V}{H} = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{\circ}$ 

The number of electron in 2 coulomb of charge is

(A)  $5 \times 10^{29}$ 

(B)  $12.5 \times 10^{18}$ 

(C)  $1.6 \times 10^{19}$ 

(D)  $9 \times 10^{11}$ 

Ans: (B)

**Hints:** 
$$n = \frac{2}{1.6 \times 10^{-19}} = 12.5 \times 10^{18}$$

The current flowing through a wire depends on time as  $I = 3t^2 + 2t + 5$ . The charge flowing through the cross section of the wire 35. in time from t = 0 to t = 2 sec. is

(A) 22 C

(C) 18 C

(D) 5C

Ans: (A)

**Hints:** 
$$Q = \int_0^2 (3t^2 + 2t + 5) dt = 22 C$$

If the charge on a capacitor is increased by 2 coulomb, the energy stored in it increases by 21%. The original charge on the 36. capacitor is

(A) 10 C

(B) 20C

30 C

(D) 40 C

Ans: (B)

Hints: 
$$\frac{q_f^2}{\frac{2C}{2C}} - \frac{q_i^2}{\frac{2C}{2C}} \times 100 = 21$$
 and  $q_f - q_i = 2$ 

solving we get  $q_i = 20$  coulomb

37. The work done in carrying a charge Q once around a circle of radius r about a charge q at the centre is

(C)  $\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{2\pi r}\right)$ 

**Hints:** Work done by conservative force in a round trip is zero

38. Four capacitors of equal capacitance have an equivalent capacitance C<sub>1</sub> when connected in series and an equivalent capaci-

tance  $C_2$  when connected in parallel. The ratio  $\frac{C_1}{C_2}$  is:

(A) 1/4

(B) 1/16

(C) 1/8

(D) 1/12

Ans: (B)

**Hints:** 
$$C_1 = \frac{C}{4}$$
 and  $C_2 = 4C \Rightarrow \frac{C_1}{C_2} = \frac{1}{16}$ 

#### KOLKATA

| 20          | M. C. 11: 4 '4           | TT 4.41 4            | C · 1 1          | C 1:          |                | 4 T            |
|-------------|--------------------------|----------------------|------------------|---------------|----------------|----------------|
| <i>3</i> 9. | Magnetic field intensity | y H at the centre of | i a circular loo | p oi radius r | carrying curre | ent 1 e.m.u is |

- (A) r/I oersted
- (B)  $2\pi I/r$  oersted
- (C)  $I/2\pi r$  oersted
- (D)  $2\pi r/I$  oersted

Ans: (B)

**Hints:**  $H = \frac{\mu_0 I}{2r} = \frac{\mu_0}{4\pi} \times \frac{2\pi I}{r}$ 

In e.m.u system  $\frac{\mu_0}{4\pi} = 1$ . So  $H = \frac{2\pi I}{r}$ 

- 40. Which of the following materials is the best conductor of electricity?
  - (A) Platinum
- (B) Gold

- (C) Silicon
- (D) Copper

Ans: (D)

- 41. Which statement is incorrect
  - (A) Phenol is a weak acid

- (B) Phenol is an aromatic compound
- (C) Phenol liberates CO, from Na, CO, soln
- (D) Phenol is soluble in NaOH

Ans: (C)

Hints: Phenol does not liberate CO<sub>2</sub> from Na<sub>2</sub>CO<sub>3</sub> solution

$$OH \longrightarrow PNa_2CO_3 \longrightarrow 2 \longrightarrow PNa^+ + H_2CO_3$$
(Stronger acid than phenol)

Note: Strong acid is not formed by weak acid

- In which of the following reactions new carbon-carbon bond is not formed:
  - (A) Cannizaro reaction
- (B) Wurtz reaction
- (C) Aldol condensation
- (D) Friedel-Craft reaction

Ans: (A)

Hints: In cannizaro's reaction no new C-C bond is formed

e.g. 
$$H$$
-C-H + H-C-H  $\longrightarrow$  50%NaOH  $\longrightarrow$  CH<sub>3</sub>OH+HCOO $\overline{\phantom{a}}$ Na $\overline{\phantom{a}}$ 

- A compound is formed by substitution of two chlorine for two hydrogens in propane. The number of possible isomeric 43. compounds is
  - (A)4

(B)3

(C)5

(D)2

Ans: (C)

**Hints:**  $C_3H_8 \xrightarrow{-2H} C_3H_6Cl_2$ , following isomers of  $C_3H_6Cl_2$  is possible

Due to presence of chiral carbon compound (IV) is optically active and forms an enantiomer. So total no of isomers =5

- 44. Which one of the following is called a carbylamine?
  - (A) R CN
- (B) R CONH,
- (C) R-CH=NH

(D) R NC

Ans: (D)

#### KOLKATA

| 45. | For making distinction betwee | n 2-pentanone | and 3-pentanone | the reagent to | be employed is |
|-----|-------------------------------|---------------|-----------------|----------------|----------------|
|     |                               |               |                 |                |                |

(A) K, Cr, O, H, SO,

(B) Zn-Hg/HCl

(C) SeO,

(D) Iodine/NaOH

Hints: In 2-pentanone *ie.*,  $CH_3$ –C– $CH_2CH_2CH_3$ ,  $CH_3$ –C– group is present due to which it can show iodoform test. *i.e.*,

$$CH_{3}-C-CH_{2}-CH_{2}-CH_{3} \xrightarrow{I_{2}/NaOH} CHI_{3} \downarrow + CH_{3}CH_{2}-CH_{2}-C - O^{-}Na^{+}$$
(Yellow ppt.)

46. Which one of the following formulae does not represent an organic compound?

 $(A) C_{4}H_{10}O_{4}$ 

 $(B) C_4 H_8 O_4$ 

 $(C) C_1 H_2 CIO_1$ 

 $(D) C_{\scriptscriptstyle A} H_{\scriptscriptstyle Q} O_{\scriptscriptstyle A}$ 

Ans: (D)

**Hints:** Unsaturation factor = 0, 1, 1, 0.5 Hence (D)

47. The catalyst used for olefin polymerization is

(A) Ziegler-Natta Catalyst

(B) Wilkinson Catalyst

(C) Raney nickel catalyst

(D) Merrifield resin

Ans: (A)

Hints:  $TiCl_3 + (C_2H_5)_3 Al$ 

48. The oxidant which is used as an antiseptic is:

 $(A) KBrO_3$ 

(B) KMnO<sub>4</sub>

(C) CrO,

(D) KNO,

Ans: (B)

49. Which of the following contributes to the double helical structure of DNA

(A) hydrogen bond

(B) covalent bond

(C) disulphide bond

(D) van-der Waal's force

Ans: (A)

50. The monomer used to produce orlon is

(A) CH,=CHF

(B) CH,=CCl,

(C) CH,=CHCl

(D) CH,=CH-CN

Ans: (D)

Hints: Orlon or PAN

 $Monomer \Rightarrow CH, = CH - CN$ 

51. 1 mole of photon, each of frequency 2500 S<sup>-1</sup>, would have approximately a total energy of:

(A) 1 erg

(B) 1 Joule

(C) 1 eV

(D) 1 MeV

Ans: (A)

**Hints:** Total Energy = Nhv =  $6.022 \times 10^{23} \times 6.626 \times 10^{-34}$  J.S.  $\times 2500$  s<sup>-1</sup> = 9.9 erg  $\approx 10$  erg

In (A) option, it should be 10 erg instead of 1 erg.

52. If n, number of radioatoms are present at time t, the following expression will be a constant:

 $(A) n_t/t$ 

(B)  $\ln n/t$ 

(C) d In n<sub>i</sub>/dt

(D) t.n.

Ans:(C)

**Hints:** 
$$-\frac{dN}{dt} = \lambda N \implies -\frac{d \ln N}{dt} = \lambda$$

Hence (C)

53. The following graph shows how  $T_{1/2}$  (half-life) of a reactant R changes with the initial reactant concentration  $a_0$ .



The order of the reaction will be:

(A) 0

(B)1

(C)2

(D)3

Ans:(C)

**Hints:**  $t_{1/2} \propto \frac{1}{a^{n-1}}$ 

Hence (C)

- 54. The second law of thermodynamics says that in a cyclic process:
  - (A) work cannot be converted into heat

- (B) heat cannot be converted into work
- (C) work cannot be completely converted into heat
- (D) heat cannot be completely converted into work

Ans: (D)

Hints: Because 0 K temperature is unattainable.

55. The equilibrium constant (K) of a reaction may be written as:

(A) 
$$K = e^{-\Delta G/RT}$$

(B) 
$$K = e^{-\Delta G^0/RT}$$

(C) 
$$K = e^{-\Delta H/RT}$$

(D) 
$$K = e^{-\Delta H^0/RT}$$

Ans: (B)

**Hints**:  $\Delta G^{\circ} = -RT \ln K$ 

$$\Rightarrow \frac{\Delta G^{\circ}}{-RT} = \ln K$$

$$\therefore K = e^{-\Delta G^{\circ}/RT}$$

56. For the reaction  $SO_2 + \frac{1}{2}O_2 = SO_3$ , if we write  $K_p = K_c(RT)^x$ , then x becomes

$$(A)-1$$

(B) 
$$-\frac{1}{2}$$

(C) 
$$\frac{1}{2}$$

Ans: (B)

**Hints**:  $K_p = K_c(RT)^x$ 

$$x = (\sum n_{(\sigma)})_{p} - (\sum n_{(\sigma)})_{R}$$

$$=1-\frac{3}{2}=-\frac{1}{2}$$

57. If it is assumed that  $\frac{235}{92}U$  decays only by emitting  $\alpha$  and  $\beta$  particles, the possible product of the decay is:

(A) 
$$^{225}_{89}Ac$$

(B) 
$$^{227}_{89}Ac$$

(C) 
$$^{230}_{89}Ac$$

(D) 
$$^{231}_{89}Ac$$

Ans: (B)

**Hints:** New mass no. =  $235 - 2 \times 4 = 227$ 

New at. no. = 
$$92 - 2 \times 2 + 1 = 92 - 4 + 1 = 89$$

58. The time taken for 10% completion of a first order reactin is 20 mins. Then, for 19% completion, the reaction will take (A) 40 mins (B) 60 mins (C) 30 mins (D) 50 mins

[11]

Ans: (A)

**Hints:** 
$$t = \frac{2.303}{\lambda} \log \frac{N_0}{N}$$

$$20 = \frac{2.303}{\lambda} \log \frac{100}{90}$$
 .....(i)

$$t = \frac{2.303}{\lambda} \log \frac{100}{81}$$
 .....(ii)

equation (i) / (ii)

 $\therefore t = 40 \text{ min.}$ 

59. Which of the following will decrease the pH of a 50 ml solution of 0.01 M HCl?

(A) addition of 5 ml of 1 M HCl

(B) addition of 50 ml of 0.01 M HCl

(C) addition of 50 ml of 0.002 M HCl

(D) addition of Mg

Ans: (A)

**Hints**:  $50 \text{ ml } 0.01 \text{ M} = 50 \times 0.01 = 0.5 \text{ millimole}$ 

 $5 \text{ ml } 1 \text{ (M)} \equiv 5 \times 1 = 5 \text{ millimole}$ 

Total millimoles = 5.5 millimole

Total volume = 55 ml.

Molarity = 
$$\frac{5.5}{55}$$
 = 0.1(M) = 10<sup>-1</sup> (M)

pH = 1

60. Equal volumes of molar hydrochloric acid and sulphuric acid are neutralised by dilute NaOH solution and x keal and y keal of heat are liberated respectively. Which of the following is true?

(A) x=y

(B)  $x = \frac{y}{2}$ 

(C) x=2y

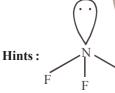
(D) none of the above

Ans: (B)

**Hints:** Enthalpy of 1 g equivalent of strong acid and 1 g equivalent strong base = 13.7 kcal

Equal volume contains double eq. of H<sub>2</sub>SO<sub>4</sub> than HCl

61. Hybridisation of central atom in NF, is


(A) sp<sup>3</sup>

(B) sp

(C) sp<sup>2</sup>

(D) dsp<sup>2</sup>

Ans: (A)



30 & 1 lone pair

Hyb. =  $sp^3$ 

62. Of the following compounds the most acidic is

 $(A) As_2O_3$ 

 $(B) P_{5}O_{5}$ 

(C) Sb,O,

(D) Bi,O,

Ans: (B)

Hints: In a group as we go downwards, the oxide basic character increases hence maximum acidic oxide is P<sub>2</sub>O<sub>5</sub>

63. The half-life of a radioactive element is 10 hours. How much will be left after 4 hours in 1 g atom sample?

(A)  $45.6 \times 10^{23}$  atoms

(B)  $4.56 \times 10^{23}$  atoms

(C)  $4.56 \times 10^{21}$  atoms

(D)  $4.56 \times 10^{20}$  atoms

Ans: (B)

**Hints:**  $t_{\frac{1}{2}} = 10 \text{ hr.}$   $K = \frac{0.693}{10}$ 

$$4 = \frac{2.303 \times 10}{0.693} \log \frac{1}{N}$$

$$\log \frac{1}{N} = \frac{4 \times 0.693}{2.303 \times 10} = 0.12036$$

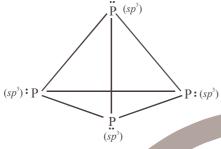
$$\log N = -0.12036 = \overline{1}.87964$$

 $N = 7.575 \times 10^{-1} \text{ g atoms}$ 

.. No. of atoms =  $7.575 \times 10^{-1} \times 6.023 \times 10^{23}$  atoms =  $4.56 \times 10^{23}$  atoms

|     |                                                         |                                                           | $\begin{pmatrix} 1 & 1 \end{pmatrix}$                                     |                                         |
|-----|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|
| 64. | For the Paschen series the v                            | alues of n <sub>1</sub> and n <sub>2</sub> in the express | sion $\Delta E = Rhc \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ ar | e                                       |
|     | (A) $n_1=1$ , $n_2=2$ , 3, 4<br>Ans: (C)                | (B) $n_1 = 2$ , $n_2 = 3, 4, 5$                           | $(C) n_1 = 3, n_2 = 4, 5, 6$                                              | (D) $n_1 = 4$ , $n_2 = 5$ , 6, 7        |
|     |                                                         | ectron shifting to third shell i.e.,                      | n = 3  to  n = 4 - 5 - 6                                                  |                                         |
| 65. |                                                         |                                                           | = $\Delta E + P\Delta V$ valid for a closed sys                           | etem?                                   |
| 00. | (A) Constant Pressure                                   |                                                           | (B) Constant temperature                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|     | (C) Constant temperature ar                             | nd nressure                                               | (D) Constant temperature, pr                                              | essure and composition                  |
|     | Ans: (A)                                                | ia pressure                                               | (D) Constant temperature, pr                                              | essure una composition                  |
|     | ` '                                                     | hen pressure remains constant.                            |                                                                           |                                         |
| 66. | ** .                                                    | *                                                         | trogen. Its molecular weight is:                                          |                                         |
| 00. | (A) 70                                                  | (B) 140                                                   | (C) 100                                                                   | (D) 65                                  |
|     | Ans: (A)                                                | (D) 1.0                                                   | (6)100                                                                    | (2) 00                                  |
|     | * *                                                     | in a molecule minimum one ato                             | m of N is present                                                         |                                         |
|     | <i>i.e.</i> , 20% ≡ 14                                  | Molecular weight = 70                                     |                                                                           |                                         |
|     | $100\% \equiv 14 \times 5 = 70$                         |                                                           |                                                                           |                                         |
| 67. | In Cu-ammonia complex, th                               | e state of hybridization of Cu <sup>+2</sup>              | is                                                                        |                                         |
|     | (A) sp <sup>3</sup>                                     | (B) $d^3s$                                                | $(C) \operatorname{sp}^2 f$                                               | (D) dsp <sup>2</sup>                    |
|     | Ans:(D)                                                 |                                                           |                                                                           |                                         |
|     | <b>Hints:</b> In $[Cu(NH_3)_4]^+$                       |                                                           |                                                                           |                                         |
|     |                                                         | idization and shape of the compl                          | ex is square planar. (One e- is exc                                       | ited from 3d to 4p during complex       |
|     | formation)                                              |                                                           |                                                                           |                                         |
| 68. |                                                         | e when Cl <sub>2</sub> gas is passed throug               |                                                                           |                                         |
|     | (A) Oxidation                                           | (B) Reduction                                             | (C) Displacement                                                          | (D) Disproportionation                  |
|     | Ans: (D)                                                | Oxidation                                                 |                                                                           |                                         |
|     | 0                                                       | 1 +                                                       | <u>5</u> \psi                                                             |                                         |
|     | Hints: $\frac{{}^{0}\text{Cl}_{2}}{\text{NaOH (conc.}}$ | & hot) NaCl + Na                                          | 5 <b>♦</b><br>ClO <sub>3</sub> + H <sub>2</sub> O                         |                                         |
|     |                                                         | Reduction                                                 |                                                                           |                                         |
|     | Hence the reaction is                                   | disproportionation                                        |                                                                           |                                         |
| 69. | "Electron" is an alloy of                               |                                                           |                                                                           |                                         |
|     | (A) Mg and Zn                                           | (B) Fe and Mg                                             | (C) Ni and Zn                                                             | (D) Al and Zn                           |
|     | Ans: (A)                                                |                                                           |                                                                           |                                         |
|     | •                                                       | fMg(95%) + Zn(4.5%) and $Cu($                             |                                                                           |                                         |
| 70. |                                                         | be restored into original form by                         | the action of:                                                            |                                         |
|     | (A) Chlorine                                            | $(B) BaO_2$                                               | $(C) H_2 O_2$                                                             | $(D) MnO_2$                             |
|     | Ans: (C)                                                |                                                           |                                                                           |                                         |
|     |                                                         |                                                           | dised by H <sub>2</sub> O <sub>2</sub> to form white PbS                  | $\mathrm{O}_4$                          |
|     | $PbS + H_2O_2 \rightarrow PbSO_4$                       | +H <sub>2</sub> O                                         |                                                                           |                                         |
|     | (Black) (white)                                         |                                                           |                                                                           |                                         |
| 71. | _                                                       | ne which has the capability to fo                         | rm complex compound and also                                              | possesses oxidizing and reducing        |
|     | properties is:                                          | (D) IINIO                                                 | (C) HCOOH                                                                 | DUCN                                    |
|     | (A) HNO <sub>3</sub>                                    | (B) HNO <sub>2</sub>                                      | (C)HCOOH                                                                  | (D) HCN                                 |
|     | Ans: (B) $HNO_2$                                        |                                                           |                                                                           |                                         |
|     | Hints: Here oxidation state                             | of N lies between –3 to +5                                |                                                                           |                                         |

- 72. Atoms in a P<sub>4</sub> molecule of white phosphorus are arranged regularly in the following way:
  - (A) at the corners of a cube


(B) at the corners of a octahedron

(C) at the corners of a tetrahedron

(D) at the centre and corners of a tetrahedron

Ans:(C)

Hints:



- 73. Which of the following statements is not correct
  - (A) Silicon is extensively used as a semiconductor
  - (C) Silicon occurs in free state in nature
- (B) Carborundum is SiC
  - (D) Mica contains the element silicon

Ans: (C)

**Hints:** Silicon exist in nature in combined state as SiO<sub>2</sub>

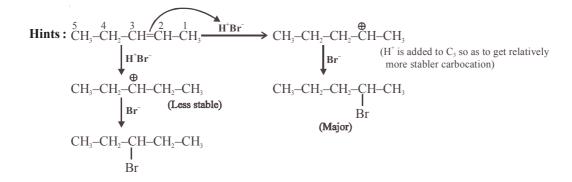
74. In aluminium extraction by the Bayer process, alumina is extracted from bauxite by sodium hydroxide at high temperature and pressures:

$$Al_2O_3(s) + 2OH^-(aq) \rightarrow 2Al_2O_2(aq) + H_2O(1)$$

Solid impurities such as  ${\rm Fe_2O_3}$  and  ${\rm SiO_2}$  are removed and then  ${\rm Al(OH)_4^-}$  is reprecipitated :

$$2Al(OH)_4^- \rightarrow Al_2O_3.3H_2O(s) + 2OH^-(aq)$$
 . In the industrial world :

- (A) Carbon dioxide is added to precipitate the alumina
- (B) Temperature and pressure are dropped and the supersaturated solution seeded
- (C) Both (A) and (B) are practised
- (D) The water is evaporated


Ans: (B)

- 75. The addition of HBr to 2-pentene gives
  - (A) 2-bromopentane only

(B) 3-bromopentane only

- (C) 2-bromopentane and 3-bromopentane
- (D) 1-bromopentane and 3-bromopentane

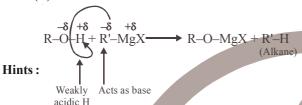
Ans: (C)



#### KOLKATA

- Ethelene can be separated from acetylene by passing the mixture through:
  - (A) fuming H<sub>2</sub>SO<sub>4</sub>
- (B) pyrogallol
- (C) ammoniacal Cu,Cl,
- (D) Charcoal powder

Ans:(C)

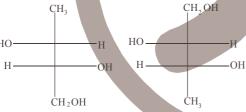

**Hints**:  $H-C \equiv C-H + Cu_2Cl_2 \rightarrow Cu^+C^- \equiv C^-Cu^+ \downarrow$ 

 $H_2C=CH_2+Cu_2Cl_2 \rightarrow No. ppt$ 

- Reaction of R OH with R'MgX produces:
  - (A) RH
- (B) R'H

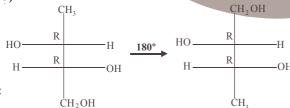
- (C) R R
- (D) R'-R'

Ans: (B)




- In the compound  $HC \equiv C CH = CH_2$  the hybridization of C-2 and C-3 carbons are respectively:
  - (A)  $sp^3 \& sp^3$
- (B)  $sp^2 \& sp^3$
- (C)  $sp^2 \& sp$
- (D) sp<sup>3</sup> & sp

Ans: (C)


**Hints:**  $H-C=C-CH=CH_2$  (Double bond is preferred)

The two structures written below represent 79.



- (A) pair of diastereomers
- (B) pair of enantiomers
- (C) same molecule
- (D) both are optically inactive

Ans: (C)



I & II are same Fischer projection because 180° rotation doesn't change configuration

Hints:

- Which of the following carbocations will be most stable? 80.
  - (A) Ph<sub>3</sub> C

- (B)  $CH_3 \overset{+}{C}H_3$  (C)  $(CH_3)_2 \overset{+}{C}H$  (D)  $CH_2 = CH \overset{+}{C}H_2$

Ans: (A)

Hints: Ph−C−Ph | (Highly resonance stabilized)

### **PHYSICS**

#### **SECTION-II**

The displacement x of a particle at time t moving under a constant force is  $t = \sqrt{x} + 3$ , x in meters, t in seconds. Find the work done by the force in the interval from t = 0 to t = 6 second.

**A.** 
$$t = \sqrt{x} + 3 \Rightarrow x = (t - 3)^2 \Rightarrow v = 2(t - 3)$$

v at t = 0, -6 m/s

v at t = 6 sec., 6 m/s

change in KE is zero  $\Rightarrow$  work done = 0

2 Calculate the distance above and below the surface of the earth at which the acceleration due to gravity is the same

$$\mathbf{A.} \quad \frac{GM}{(R+h)^2} = \frac{GM(R-h)}{R^3}$$

on solving we get

$$-Rh + R^2 - h^2 = 0$$

$$h = \frac{-R + \sqrt{R^2 + 4R^2}}{2} = \frac{(\sqrt{5} - 1)R}{2}$$

A ray of light travelling inside a rectangular glass block of refractive index  $\sqrt{2}$  is incident on the glass-air surface at an angle of incidence of 45°. Show that the ray will emerge into the air at an angle of refraction equal to 90°

A. Given 
$$C = 45^{\circ}$$

$$\sin c = \frac{1}{\mu} = \frac{1}{\sqrt{2}} = \sin 45^{\circ}$$

So the ray will graze the interface after refraction at an angle of 90°

4 Two cells each of same e.m.f 'e' but of internal resistances r<sub>1</sub> and r<sub>2</sub> are connected in series through an external resistance R. If the potential difference between the ends of the first cell is zero, what will be the value of R in terms r<sub>1</sub> and r<sub>2</sub>?

A. 
$$I = \frac{2e}{r_1 + r_2 + R}$$
; now  $e - Ir_1 = 0$   
 $\Rightarrow r_2 - r_1 + R = 0$ ,  $R = (r_1 - r_2)$ 

5 At time t = 0, a radioactive sample has a mass of 10 gm. Calculate the expected mass of radioactive sample after two successive mean lives.

**A.** Two successive mean lives = 
$$\frac{2}{\lambda}$$

No. of nuclei after two mean lives =  $N_0 e^{-(\lambda)(\frac{2}{\lambda})} = \frac{N_0}{e^2}$ 

Therefore mass = 
$$\frac{10}{e^2}$$
 gm





#### **KOLKATA**

### **CHEMISTRY**

#### **SECTION-II**

6 Calculate the number of H<sup>+</sup> ion present in 1 ml of a solution whose pH is 10.

**A.** 
$$pH = 10$$

$$[H^+] = 10^{-10} \text{ M}$$

In 1000 ml solution there are  $6.023 \times 10^{13} \, H^+$  ions

In 1 ml solution there are  $6.023 \times 10^{10} \, \text{H}^+$  ions

Give the structure of pyro-sulfuric acid. How would you prepare it? What would you observe when colourless HI is added to pyro-sulfuric acid?

A

(Pyro-sulfuric acid)

(Oleum)

Preparation of 
$$H_2S_2O_7$$
:  $H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7$   
(Oleum)

$$H_2SO_4 + 2HI \longrightarrow 2H_2O + SO_2 + I_2$$
(Colourless) (Violet colour)

- 8 Write with a balanced chemical equation how gypsum is used for the conversion of ammonia into ammonium sulfate without using  $H_2SO_4$ .
  - A. Balanced reaction is

$$2NH_3 + CaSO_4 + CO_2 + H_2O = (NH_4)_2SO_4 + CaCO_3$$

9 Convert phenol to p-hydroxy acetophenone in not more than 2 steps.

An organic compound 'A' on treatment with ammoniacal silver nitrate gives metallic silver and produces a yellow crystalline precipitate of molecular formula C<sub>9</sub>H<sub>10</sub>N<sub>4</sub>O<sub>4</sub>, on treatment with Brady's reagent. Give the structure of the organic compound 'A'.





Compound (A) is an aldehyde. It should be propanal CH<sub>3</sub>CH<sub>2</sub>CHO

Reactions:

CH<sub>3</sub>CH<sub>2</sub>CHO Ammoniacal AgNO<sub>3</sub> (i) (Tollen's reagent)

(ii) 
$$O_2N$$
  $NH.NH_2 + O$   $= CH.CH_2.CH_3 \xrightarrow{-H_2O} O_2N$   $NH-N=CH-CH_2-CH_3$ 

(Yellow ppt. with mol. formula  $C_9H_{10}N_4O_4)$ 

(2, 4-Dinitro phenyl hydrazine)

(Brady's reagent)

