2008

STATISTICS

Paper 2

Time: 3 Hours]

| Maximum Marks : 300

INSTRUCTIONS

Candidates should attempt **all** the questions in Parts A, B & C However, they have to choose only **three** questions in Part D.

Answers must be written in the medium opted (i.e. English or Kannada).

This paper has four parts:

A 20 marks

B 100 marks

C 90 marks

D 90 marks

Marks allotted to each question are indicated in each part.

Assume suitable data if considered necessary and indicate the same clearly.

Notations and symbols used are as usual.

PART A

 $4 \times 5 = 20$

Each question carries 5 marks.

- 1. (a) Describe ratio method of estimation. When is this method more precise than simple random sampling?
 - (b) Explain 'reliability' and 'hazard rate' and establish a relation between them.
 - (e) Explain duality in linear programming and give its economic interpretation.
 - (d) Describe the logistic model of population growth.

- Each question carries 10 marks.
- 2. Explain PPS sampling. Give an unbiased estimator for the population total under PPSWR and derive its variance. How do you estimate this variance?
- 3. Explain a method of analyzing the data obtained from a randomized block design.
- 4. Explain the basis and construction of control charts for 'defectives' and 'defects'.
- 5. Derive the reliability of a system with n independent components having exponential life length when the components are connected in series.
- 6. Derive the probability distribution of number of customers in the M|M|1: FIFO queueing system in steady state conditions. Hence determine the mean queue length.
- 7. Find an initial solution by the least cost method for the following transportation problem and then solve:

	D	\mathbf{D}_2	D_3	Availability
O ₁	2	3	4	30
O_2	6	2	5	50
03	3	2	7	35
Requirement	45	25	45	

- 8. Describe the method of constructing an abridged life table.
- 9. What is multicollinearity? What are its consequences? How do you overcome the problem of multicollinearity?
- 10. Write a program in FORTRAN to fit a straight line $y = \alpha + \beta x$ to the given data $\{(x_i, y_i), i = 1, 2, ... n\}$ using the method of least squares.
- 11. Explain the need for scaling techniques in psychological studies. Explain any two scaling techniques.

PART C

 $6 \times 15 = 90$

Each question carries 15 marks.

- 12. Describe two-stage sampling. Explain its advantages. Outline a method of determining the optimum sampling and sub-sampling fractions.
- 13. Describe the Yate's technique of analyzing 2^3 factorial experiment. Explain the meaning of confounding in factorial experiments.
- 14. Outline the basis and construction of \overline{X} and R charts. Derive the OC of R-chart.
- 15. Explain the components of a time-series. Outline the 'ratio to trend' and 'link relative' methods to measure seasonal fluctuations.
- 16. Solve the following linear programming problem:

$$\label{eq:maximize} \begin{array}{ll} \text{Maximize} & Z = 5x_1 + 3x_2 \\ \\ \text{subject to} & 2x_1 + x_2 \leq 1 \\ \\ & x_1 + 4x_2 \geq 6 \\ \\ & x_1, x_2 \geq 0. \end{array}$$

- 17. (a) What is an index number? Explain the construction of Paasche's and Fisher's price index numbers and compare them.
 - (b) Explain 'stable population' and 'stationary population'.

PART D

 $3 \times 30 - 90$

Answer any three of the following questions. Each question carries 30 marks.

- 18. (a) Explain (i) cluster sampling, (ii) two-phase sampling.
 - (b) Define recurrent and transient states. Show that a state j is recurrent iff $\sum_{n=0}^{\infty} p_{jj}^{(n)}$ is divergent.
- 19. (a) Explain the analysis of data in a balanced incomplete block design.
 - (b) Compare Shewhart control charts and CUSUM control charts. Outline the V-mask procedure.
- 20. (a) Explain the truncated life testing for exponential model.
 - (b) Describe the lot-by-lot double sampling plan for attributes. Derive its expressions for OC, ASN and AOQ.
- 21. (a) Stating the assumptions, derive the optimum inventory policy when the demand is probabilistic.
 - (b) Outline the Leontief's method of fitting demand curve from time series data.
- 22. (a) What is the problem of identification in a simultaneous equation model? Establish a necessary condition for identifiability.
 - (b) Explain
 - (i) infant mortality rate
 - (ii) general fertility rate
 - (iii) net reproduction rate.