This question paper contains 4 printed pages]

Your Roll No

5170

B.Sc. (Prog.) / II J CH-203: PHYSICAL CHEMISTRY (NC – Admission of 2008 and onwards)

Time: 2 Hours Maximum Marks: 50

(Write your Roll No on the top immediately on receipt of this question paper)

Use of scientific calculators is allowed.

Attempt four questions in all.

Question No 1 is compulsory

I. Explain:

- (a) Viscosity of gases increases with increase in temperature whereas that of liquids decreases with increase in temperature
- (b) Surface tension becomes zero at critical temperature.
- (c) In phase diagram of water fusion (melting point) curve is inclined towards the pressure axis.
- (d) Equivalent conductance increases with increase in temperature and decreases with increases in viscosity of medium

- (e) Solutions of electrolytes do not obey Raoult's Law
- (f) Advantages of potentiometric titrations.

 $2 \times 6 = 12$

4

4

II. (a) Define (i) collision diameter (ii) Mean free path.

Derive a relation between collision diameter and mean free path of a gaseous molecule

- (b) Calculate the root mean square speed and most probable speed of hydrogen molecule at 27 °C
- (c) Give the physical significance of the van der Waals constants "a" & 'b" What are their units ? Show that the van der Waals constant "b" is four times the actual volume occupied by molecules.

 4½
- III. (a) Why do you use the same viscometer for liquids and water during the experimental determination of viscosity by Ostwald Viscometer method in the laboratory ? Describe the experiment
 - (b) In measuring surface tension of a liquid A by drop number method using Stalagmometer for the same volume of A gave 55 drops while water gave 25 drops Density of water is 0.996 g/cm³ and density of the liquid is 0 8000 g/cm³ and surface tension of water is 72 dynes/cm Calculate the surface tension of liquid A

3

(c)	Denve	the	Vant	Hoff	Reaction	ısotherm
	$\Delta G^{\circ} = -RT \ln Kp$					

3

3

4

3

2

(d) For the chemical reaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Partial pressure of N_2 and H_2 are 0.8 and 0.4 atm respectively at equilibrium Total pressure of the system is 2.8 atm Calculate K_p for the above reaction.

IV (a) Define (1) Phase (11) Component (111) Degree of Freedom

State the Gibbs Phase Rule

- (b) Draw the phase diagram of the one component system of water Discuss and explain its salient features. 5½
- (c) The partition coefficient of a solute X between chloroform and water is 0.2 Calculate the amount of solute extracted from 100 ml of aqueous solution containing 1 gm. of substance using 100 ml of chloroform in two equal installments
- (a) State Raoult's Law of ideal solution.
- (b) Define "Critical Solution Temperature" and give examples of a system having upper C.S T and lower C S.T Give the effect of impurity on C.S.T

5170 3 P.T.O.

- (c) Discuss in detail the method for the determination of the elevation in boiling point.
- (d) The freezing point of pure benzene is 5 4 °C and that of a solution containing 2 gm of solute per 100 gm of benzene is 4.4 °C. Calculate the molecular weight of solute?

 [Given molal depression constant for benzene is 5 °C m⁻¹]

 2½
- VI (a) State and explain Kohlrausch's Law of Independent Migration of Ions.
 - (b) When a certain conductance cell was filled with 0 02 M KCl (with specific conductance 0 002768 ohm⁻¹ cm⁻¹) it had a resistance of 82 4 ohms at 25 °C. When filled with 0 005 N K₂SO₄ it had a resistance of 326 ohms Calculate (i) cell constant (ii) conductance (iii) specific conductance (iv) equivalent conductance of 0.005 N K₂SO₄
 - (c) Write short notes on any one of the following
 - (1) Calomel Electrode
 - (11) Glass Electrode
 - (111) Reversible Electrode

31/2

6

3

2.000