This ques	stion paper	contains 3	printed	pages
-----------	-------------	------------	---------	-------

Your Roll No

5191

B.Sc. (Prog.) / II J COMPUTER SCIENCE CS-202 – Computer System Architecture (Admissions of 2005 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No on the top immediately on receipt of this question paper.)

All questions are compulsory.

1 (a) Simplify the boolean function F together with the don't care condition d using Karnaugh map in sum of product form. $F(x, y, z) = \sum (0, 2, 6)$

 $d(x, y, z) = \sum (1, 3, 5)$

- (b) What is a state table ? How is it different from excitation table ?
- (c) Write excitation table for SR Flip Flop.
- 2 (a) Differentiate between Multiplexer, a decoder and an encoder. 3
 - (b) Draw and explain the functioning of a 4 bit bidirectional shift register with parallel load.

5

3

3	(a)	Convert the following numbers to the indicated base:	
		(i) $(7562)_{10}$ to $(___)_8$	
		(ii) $(1938)_{10}$ to $(___)_{16}$	
		(iii) $(175)_{10}$ to $(___)_2$	
		(iv) $(F3A7C2)_{16}$ to $(_{})_2$	
		(v) $(F3A7C2)_{16}$ to $(_{})_8$	5
	(b)	Perform following arithmetic operations in binary using two's complement and 4 bit registers (i) +14+5 (ii) +14-5	4
(c)	What is floating point representation of real	•	
	(0)	numbers? Give an example of normalized floating point number.	3
4.	(a)	Draw the circuit diagram and explain the functioning of a 3 state bus buffer. Where is it used?	6
	(b)	Explain the selective mask, selective complement and selective clear operations. Compute the contents of register A after each operation, if contents of register A before operation = 1100 and contents of register B (logic operand)	
		= 1010	6
5	(a)	Explain the following instructions giving two examples of each: (i) memory reference instruction (ii) register reference instruction	
		(11i) input output instruction	6

	(b)	Draw and explain the flow chart for the instruction cycle (initial configuration) showing how the control determines the instruction type after the decoding	7
6	(a)	Distinguish between Isolated I/O and Memory mapped I/O	4
	(b)	Explain asynchronous data transfer giving an example	2
	(c)	Differentiate between Implied and Immediate mode of addressing	2
	(d)	What is the need to have I/O interface for peripheral devices?	2
7	(a)	Briefly explain the Daisy-chairing method of handling priority interrupt	3
	(b)	Explain three different types of interrupts	3
	(c)	What is cache memory? What are its uses?	2
	(d)	What is Content Addressable Memory (CAM)?	2