PHYSICS

In the equation $b = a^2 \cos^2 2\pi \frac{\beta \gamma}{\alpha}$, if the units of a,

 α and β are m, s⁻¹ and (m/s)⁻¹ respectively. The units of b and γ are

- (1) m and $(m/s^2)^{-1}$
- (2) m^2 and (m/s^2)
- (3) m^2 and $(m/s^2)^{-1}$
- (4) m and m/s^2
- Which of the following is *not* a unit of energy? 2.
 - (1) erg
- (2) joule
- (3) kilowatt
- (4) kilowat hour
- If $x = at + bt^2$ where x is in metres and t is in seconds, then unit of b is
 - (1) m
- (2) m/s
- (3) m/s^2
- (4) ms^2
- The pressure P, volume V and temperature T of a real gas are related by the equation

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

where a, b & R are constants, the dimensions of a is same as that of

(1) p

(2) RT

(3) *V*

- (4) pV^2
- Of the following which one has dimensions different 5. from the remaining three
 - (1) Energy per unit volume
 - (2) Force per unit area
 - (3) Stress × strain
- (4) Force \times area
- If energy E, time T and momentum P are chosen as fundamental quanties, then the dimension of length
 - (1) ETP^{-1}
- (2) $ET^{-1}P^{-1}$
- (3) *ETP*
- (4) $E^{-1}P^{-1}P$
- The physical quantity that has the ratio of 10³ between its numerical values in SI units and CGS units is
 - (1) Young's modulus
- (2) Density
- (3) Pressure
- (4) Energy
- The physical quantity which has dimensional 8. formula MT⁻³ is
 - (1) Surface tension
- (2) Solar constant
- (3) Density
- (4) Compressibility
- The dimensional formula for calorie is
 - (1) ML^2T^{-2}
- (2) MLT⁻²
- (3) $M^2I^2T^{-1}$
- (4) $ML^{-1}T^{-1}$
- 10. If $x = \frac{B}{A}(1 e^{-At})$, in which x is displacement in metres and t is time in seconds, then the unit of B is

- (1) $m^{-1}s^{-1}$
- (2) m s $^{-1}$
- (3) $m s^{-2}$
- $(4) m^{-1}s$
- 11. If the momentum of a body is increased by 0.1%, its K.E. will increase by
 - (1) 0.01%
- (2) 0.5%
- (3) 0.1%
- (4) 0.2%
- 12. A particle is moving in uniform circular motion with origin as the centre in fig. At which point the velocity of particle can be 2i - 2j

- (2) P_2 $(3) P_3$
- $(4) P_4$

- 13. Following sets of three forces act on a body. In which case the resultant cannot be zero?
 - (1) 10 N, 10 N, 10 N
- (2) 10 N, 10 N, 20 N
- (3) 10 N, 20 N, 20 N
- (4) 10 N, 20 N, 40 N
- 14. Two forces have magnitudes in the ratio 3:5 and the angle between their direction is 60°. If their resultant is 35 N, their magnitudes are
 - (1) 12 N, 20 N
- (2) 15 N, 25 N
- (3) 18 N, 30 N
- (4) 21 N, 28 N
- 15. For any two vectors $\vec{A} \& \vec{B}$ if $\vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}|$, the magnitude \vec{C} , where $\vec{C} = \vec{A} + \vec{B}$ is

(1)
$$\sqrt{A^2 + B^2 + \sqrt{2}AB}$$
 (2) $\sqrt{A^2 + B^2}$

(2)
$$\sqrt{A^2 + R^2}$$

$$(3) A + B$$

(4)
$$\sqrt{A^2 + B^2 + AB/\sqrt{2}}$$

- 16. Which is not a unit of magnetic flux?
 - (1) Weber
- (2) Gauss
- (3) Maxwell
- (4) Tesla × metre²
- The number N of particles crossing a unit area perpendicular to X-axis in unit time is given by

$$N = -D\frac{dn}{dx}$$

where n is the number of particles per unit volume, then the dimensional formula for diffusion constant D is

- (1) LT²
- (2) L^2T^{-4}
- (3) $L T^{-3}$
- (4) L^2T^{-1}
- 18. Of the following quantities which has dimensions different from the remaining three
 - (1) eV
- (2) hv
- (3) $\frac{1}{2}\varepsilon_0 E^2$
- (4) kT

19.	If the velocity of light C , the universal gravitational constant G and Planck's constant h be chosen as fundamental quantities then the dimensions of mass	28.	What is the unit of k is the relation $U = \frac{ky}{y^2 + a^2}$
20.	is this system (1) hCG (2) hCG^{-1} (3) $h^{-1}C^{-1}G$ (4) $h^{1/2}C^{1/2}G^{-1/2}$ The force F acting on a particle in terms of time	1	where U represents the potential energy, y represents the displacement and a represents the maximum displacement <i>i.e.</i> , amplitude? (1) m s ⁻¹ (2) m s
	t and distance x is given by $F = (A\cos Bx) (C\sin Dt)$	29.	(3) J m (4) J s ⁻¹ The unit of electric field is not equivalent to (1) N C^{-1} (2) J C^{-1}
	The dimensions of (AC) and (BD) respectively are (1) MLT ⁻² , M ⁰ L ⁻¹ T ¹ (2) MLT ⁻² , ML ⁻¹ T ⁻¹ (3) ML ² T ⁻² , M ⁰ L ⁻¹ T ⁻² (4) MLT ⁻² , M ⁰ L ⁻¹ T ⁻¹	30.	(3) V m ⁻¹ (4) J C ⁻¹ m ⁻¹ The velocity of a body which has fallen freely under
21.	The density of a material in the CGS system is 8 g/cm ³ . In a system in which the unit of length is 5 cm and the unit of mass is 20 g, the density is		gravity varies as $g^p h^q$, where g is the acceleration due to gravity and 'h' is the height through which it has fallen. The values of p and q are
22	(1) 16 units (2) 25 units (3) 32 units (4) 50 units		(1) $-\frac{1}{2}, \frac{1}{2}$ (2) $\frac{1}{2}, -\frac{1}{2}$ (3) $\frac{1}{2}, \frac{1}{2}$ (4) $-\frac{1}{2}, -\frac{1}{2}$
22.	The time period of a simple pendulum is to be determined with the help of a stop clock having a	31.	(3) $\frac{1}{2}$, $\frac{1}{2}$ (4) $-\frac{1}{2}$, $-\frac{1}{2}$ In a particular system, the units of length, mass and
	least count of $\frac{1}{3}$ second. If the estimated time period is about 2 seconds, time for a least how many	31.	time are chosen to be 10 cm, 10 g and 0.1 S respectively. The unit of force in this system will be
	oscillations must be recorded so that the periodic time is determined with an error less than 0.67%		(1) 0.1 N (2) 1 N (3) 10 N (4) 100 N
	(1) 6 (3) 18 (4) 25	32.	The resultant of two forces, each P , acting at an angle θ is
23.	If none of vectors \vec{A} , \vec{B} & \vec{C} is zero and if $\vec{A} \times \vec{B} = 0$ and $\vec{B} \times \vec{C} = 0$, then the angle between \vec{A} & \vec{C} is	nce	$(1) 2P\sin\frac{\theta}{2} \qquad (2) 2P\cos\frac{\theta}{2}$
	(1) 0 (2) $\pi/2$ (3) π (4) None of these	33.	(3) $2P \cos q$ (4) $P\sqrt{2}$ The following four forces act simultaneously on a
24.	If $\vec{A} = \vec{B} + \vec{C}$ and the magnitudes of \vec{A} , $\vec{B} \& \vec{C}$ are 5, 4 & 3 units respectively, the angle between $\vec{A} \& \vec{C}$ is		particle at rest at the origin of the co-ordinate system, $\vec{F}_1 = 2\hat{i} - 3\hat{j} - 2\hat{k}, \qquad \vec{F}_2 = 5\hat{i} + 8\hat{j} + 6\hat{k},$
	(1) $\cos^{-1}\left(\frac{3}{5}\right)$ (2) $\cos^{-1}\left(\frac{4}{5}\right)$		$\vec{F}_3 = -4\hat{i} - 5\hat{j} + 5\hat{k}$, and $\vec{F}_4 = -3\hat{i} + 4\hat{j} - 7\hat{k}$
	(3) $\sin^{-1}\left(\frac{3}{4}\right)$ (4) $\frac{\pi}{2}$		The particle will move in (1) XY plane (2) YZ plane (3) ZX plane (4) Space
25.	the magnitude of their vector product is 5. The angle	34.	Two forces 8 N and 12 N act at 120°. The third force require to keep the body in equilibrium is
	between the vector $\vec{A} \& \vec{B}$ is (1) 30° (2) 45°		(1) 4 N (2) $4\sqrt{7}$ N
	(3) 60° (4) 90°		(3) 20 N (4) None of these
26.	The dimensional formula of electrical conductivity is	35.	Given: $\vec{A} = 3\hat{i} - 4\hat{j} - 2\hat{k}$ and $\vec{B} = 2\hat{i} + 4\hat{j} - 5\hat{k}$. The
	(1) $[M^{-1}L^{-3}T^3A^2]$ (2) $[ML^3T^3A^2]$. = . •	angle which $\vec{A} + \vec{B}$ makes with Y-axis is
27	(3) $[M^2L^3T^{-3}A^2]$ (4) $[ML^3T^{-3}A^{-2}]$		
<i>∠1</i> .	7. If energy E, velocity V and time T are chosen as fundamental quantities, then the dimensional formula		(1) 0° (2) 45° (3) 60° (4) 90°
	of surface tension is	36.	The vector sum of the forces of 10 N and 6 N can be
	(1) $[EV^{-2}T^{-2}]$ (2) $[EV^{-1}T^{-2}]$ (3) $[EV^{-2}T^{-1}]$ (4) $[E^{2}V^{-1}T^{-2}]$		(1) 2 N (2) 8 N
	(3) $[EV^{-2}T^{-1}]$ (4) $[E^2V^{-1}T^{-2}]$		(3) 18 N (4) 20 N

37.	A man walks 40 m North, then 30 m East and then
	40 m South. What is his displacement from the
	starting point?
	(1) 30 m East (2) 150 m West
	(3) 40 m West (4) 150 m East
38.	The resultant \vec{C} of \vec{A} and \vec{B} is perpendicular to \vec{A} .

Also,
$$|\vec{A}| = |\vec{C}|$$
. The angle between \vec{A} and \vec{B} is

(1)
$$\frac{\pi}{4}$$
 radian (2) $\frac{3\pi}{4}$ radian (3) $\frac{5\pi}{4}$

(3)
$$\frac{5\pi}{4}$$
 (4) $\frac{7\pi}{4}$

- 39. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} . The magnitude of the resultant is equal to half of the magnitude of \vec{B} . The angle between $\vec{A} \& B$ is
 - (1) 0°
- $(2) 60^{\circ}$
- (3) 150°
- (4) 180°
- 40. In an equilateral triangle ABC, AL, BM and CN are the medians. Which of the following would correctly represent the resultant of two forces represented by BC & BA?
 - (1) AC
- (2) 2AL
- (3) 2BM
- (4) 2CN
- 41. A vector of length m is turned through an angle β about its tail. The change in the position vector of its (1) $2m \cdot \sin \frac{\beta}{2}$ (2) $2m \cdot \cos \frac{\beta}{2}$ 48.
- (3) $2m.\tan\frac{\beta}{2}$ (4) $2m.\cot\frac{\beta}{2}$
- 42. Vector \vec{A} is 2 cm long and is 60° above the x-axis in the first quadrant. Vector \vec{R} is 2 cm long and is 60° below the x-axis in the fourth quadrant. The sum $\vec{A} + \vec{B}$ is a vector of magnitude
 - (1) 2 along + y-axis (2) 2 along + x-axis

 - (3) 1 along + x-axis (4) 2 along x-axis
- 43. If the resultant of two vectors $\vec{A} \& \vec{B}$ is perpendicular to \vec{A} , then the angle between $\vec{A} \& \vec{B}$ is
 - (1) $\tan^{-1}\left(-\frac{A}{B}\right)$ (2) $\sin^{-1}\left(\frac{A}{B}\right)$

 - (3) $\tan^{-1}\left(\frac{A}{R}\right)$ (4) $\cos^{-1}\left(-\frac{A}{R}\right)$
- 44. Two point masses 1 & 2 move with uniform velocities $\vec{v}_1 \& \vec{v}_2$ respectively. Their initial position vectors are $\vec{r}_1 \& \vec{r}_2$ respectively. Which of the following should be satisfied for the collision of the point masses?

$$(1) \ \frac{\vec{r}_2 - \vec{r}_1}{|\vec{r}_2 + \vec{r}_1|} = \frac{\vec{v}_2 + \vec{v}_1}{|\vec{v}_2 - \vec{v}_1|} \quad (2) \ \frac{\vec{r}_2 - \vec{r}_1}{|\vec{r}_2 - \vec{r}_1|} = \frac{\vec{v}_1 - \vec{v}_2}{|\vec{v}_1 - \vec{v}_2|}$$

(3)
$$\frac{\vec{r}_2 - \vec{r}_1}{|\vec{r}_2 + \vec{r}_1|} = \frac{\vec{v}_2 - \vec{v}_1}{|\vec{v}_2 + \vec{v}_1|}$$
 (4)
$$\frac{\vec{r}_2 + \vec{r}_1}{|\vec{r}_2 + \vec{r}_1|} = \frac{\vec{v}_2 - \vec{v}_1}{|\vec{v}_2 + \vec{v}_1|}$$

- 45. In going from one city to another, a car travels 75 km north, 60 km north-west and 20 km east. The magnitude of displacement between the two cities is (Take $1/\sqrt{2} = 0.7$)
 - (1) 170 km
- (2) 137 km
- (3) 119 km
- (4) 140 km
- 46. Two forces P and Q acting at a point are such that if P is reversed, the direction of the resultant is turned through 90°. Then
 - (1) P = Q
- (3) $P = \frac{Q}{2}$
- (4) Non relation between P & Q
- 47. Two vectors $\vec{a} & \vec{b}$ are at an angle of 60° with each other. Their resultant makes an angle of 45° with \vec{a} .
 - If $|\vec{b}| = 2$ units, then $|\vec{a}|$ is
 - (1) $\sqrt{3}$
- (2) $\sqrt{3}-1$

- 48. A carrom board $(4' \times 4')$ has the queen at the centre. The queen hit by the striker moves to the front edge, rebounds and goes in the hole behind the striking line. The displacement of the queen from the centre of the hole is
 - (1) 4'

- (3) $\frac{2}{2}\sqrt{10}$ '
- $(4) \frac{4}{3}\sqrt{10}$
- 49. The resultant of three vectors 1, 2 & 3 units whose directions are those of the sides of an equilateral triangle is at an angle of
 - (1) 30° with the first vector
 - (2) 15° with the first vector
 - (3) 100° with the first vector
 - (4) 150° with the first vector
- 50. The resultant of two vectors \vec{P} and \vec{Q} is \vec{R} . If the magnitude of \vec{Q} is doubled, the new resultant becomes perpendicular to \vec{P} , then the magnitude of \vec{R} is
 - (1) $\frac{P-Q}{2PQ}$ (2) $\frac{P+Q}{P-Q}$

(3) Q

CHEMISTRY

1.5 mole of Benzene is completely converted into carbondioxide. Carbondioxide is partially used in photosynthesis for preparation of glucose. If 225 g glucose is formed, then the volume of CO ₂ left at NTP is		n 🦰	The number of moles of KI required to produce 0.4 moles of K ₂ Hgl ₄ by reaction with HgCl ₂ is	
			(1) 0.4	(2) 0.8
			(3) 3.2	(4) 1.6
(1) 3.36 L	(2) 33.6L	58.	The volume of oxygen that will be required complete combustion of 18.2 litres of propane	
` ′	` ′		(1) 91 litre	(2) 81 litre
$H_3BO_3 \rightarrow HBO_2 + H_2O$ (i) $H_3BO_3 \rightarrow B_2O_3 + H_2O$ (ii) if 9 mole H_3BO_3 is taken some part decompose like (i) and remaining like (ii). If total 11 mole of H_2O is			(3) 72.8 litre	(4) None of these
		59.	How many moles of HCl will be present in 100 mL of a solution of specific gravity 1.08, containing 20%	
				trance
		S		(2) 0.60
7	(2)	ance	` '	(4) 0.12
(3) 4	(4) 5	60.	minimum amount	₂ SO ₄ in water is 16g at 50°C. The of water required to dissolve 4g
			- ·	
		·Ι	` ,	(2) 25g
			` ,	(4) 75g
(1) 0.2 g (3) 0.6 g	(4) 0.8 g	61.	A Property of the Control of the Con	Cl solution was heated in a beaker. reduced to 600 mL, 3.25 g of HCl
How many number of sulphate ions in 100 ml of 0.001		rance	was given out. The	new normality of solution is:
M H_2SO_4 solution?	(2) (222 1224		· /	(2) 0.685
(1) 6.022×10^{-3}	$(2) \ 6.023 \times 10^{-4}$		(3) 0.1043	(4) 6.50
	(4) 2 × 10 ⁺	62.		4 (density 1.8g/mL) is 18M. The SO_4 is:
(i) 1 gm atom	(a) 16 gm of O		(1) 36	(2) 200
(ii) 1 gm molecule	(b) 22.4 lt		(3) 500	(4) 18
(iii) gm molar volume	(c) 1 mol of O ₂		4 0 50 5 / T) ·	solution of NaCl (specific gravity
- Am			(1) 1.0585	(2) 1.0
13/10	(d) 8 gm	atrani	(3) 0.10	(4) 0.0585
1 m	(e) 11.2 lt	64.	No. of oxalic acid	molecules in 100 mL of 0.02 N
(2) i-b, ii-a, iii-c, iv-d, v-e (3) i-c, ii-b, iii-d, iv-a, v-e			oxalic acid are:	
			$(1) \ 6.023 \times 10^{20}$	
			$(2) \ 6.023 \times 10^{21}$	
The empirical formula of a compound is H ₂ CO, 0.0833 moles of the compound contains Ig hydrogen. The		•	$(3) \ 6.023 \times 10^{22}$	$(4) \ 6.023 \times 10^{23}$
		65	Which mode of expressing concentration is independent of temperature ?	
The same of the sa	•		(1) Molarity	(2) Molality
	2 10 2		(3) Formality	(4) Normality
	carbondioxide. Carbond photosynthesis for prepare glucose is formed, then NTP is (1) 3.36 L (3) 1.8 L H ₃ BO ₃ on heating decomed H ₃ BO ₃ → HBO ₂ + H ₂ O if 9 mole H ₃ BO ₃ is taken (i) and remaining like (ii) formed. Then the mole of (1) 2 (3) 4 100 ml of a mixture of neutralised by 10 ml of 0. NaOH in 100 ml solution (1) 0.2 g (3) 0.6 g How many number of sulp M H ₂ SO ₄ solution? (1) 6.022 × 10 ¹⁹ (3) 10 ⁻⁴ Match the following: (i) 1 gm atomed ii) 1 gm molecule (iii) gm molar volume (iv) Equivalent mass of oxygen (v) 1 Equivalent of H ₂ (1) i-a, ii-c, iii-b, iv-d, v-e, v-e, v-e, v-e, v-e, v-e, v-e, v-e	carbondioxide. Carbondioxide is partially used in photosynthesis for preparation of glucose. If 225 glucose is formed, then the volume of CO_2 left a NTP is (1) 3.36 L (2) 33.6L (3) 1.8 L (4) 18.4L H_3BO_3 on heating decompose on two ways $H_3BO_3 \rightarrow HBO_2 + H_2O$ (i) $H_3BO_3 \rightarrow HBO_2 + H_2O$ (ii) if 9 mole H_3BO_3 is taken some part decompose lik (i) and remaining like (ii). If total 11 mole of H_2O i formed. Then the mole of B_2O_3 formed is (1) 2 (2) 3 (3) 4 (4) 5 100 ml of a mixture of NaOH and Na $_2SO_4$ i neutralised by 10 ml of 0.5 M H_2SO_4 . The amount of NaOH in 100 ml solution is (1) 0.2 g (2) 0.4 g (3) 0.6 g (4) 0.8 g How many number of sulphate ions in 100 ml of 0.00 M H_2SO_4 solution? (1) 6.022 × 10 ¹⁹ (2) 6.023 × 10 ²⁴ (3) 10 ⁻⁴ (4) 2 × 10 ⁻⁴ Match the following: (i) 1 gm atom (a) 16 gm of O (ii) 1 gm molecule (b) 22.4 lt (iii) gm molar volume (c) 1 mol of O_2 (iv) Equivalent mass of oxygen (d) 8 gm (v) 1 Equivalent of H_2 (e) 11.2 lt (l) i-a, ii-c, iii-b, iii-d, iv-a, v-e (4) i-e, ii-b, iii-c, iv-d, v-a The empirical formula of a compound is $H_2CO_2O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O$	carbondioxide. Carbondioxide is partially used in photosynthesis for preparation of glucose. If 225 g glucose is formed, then the volume of CO ₂ left at NTP is (1) 3.36 L (2) 33.6L (3) 1.8 L (4) 18.4L (4) 18.4L (4) 18.9O ₃ on heating decompose on two ways $H_3BO_3 \rightarrow HBO_2 + H_2O$ (i) $H_3BO_3 \rightarrow H_2O_3 + H_2O$ (ii) if 9 mole H_3BO_3 is taken some part decompose like (i) and remaining like (ii). If total 11 mole of H_2O is formed. Then the mole of B_2O_3 formed is (1) 2 (2) 3 (3) 4 (4) 5 (4) 5 (4) 5 (5) (60. 4) 5 (60. 4) 5 (60. 4) 5 (60. 4) 60. 60. 60. 60. 60. 60. 60. 60. 60. 60.	carbondioxide. Carbondioxide is partially used in photosynthesis for preparation of glucose. If 225 g glucose is formed, then the volume of CO ₂ left at NTP is (1) 3.36L (2) 33.6L (3) 3.2 (3) 1.8L (4) 18.4L (H ₃ BO ₃ on heating decompose on two ways H ₃ BO ₃ \rightarrow HBO ₂ + H ₂ O (i) (i) H ₃ BO ₃ \rightarrow B ₂ O ₃ + H ₂ O (ii) (if 9 mole H ₃ BO ₃ is taken some part decompose like (i) and remaining like (ii). If total 11 mole of H ₂ O is formed. Then the mole of B ₂ O ₃ formed is (1) 2 (2) 3 (3) 4 (4) 5 (1) 0.50 (3) 0.80 (4) 5 (1) 0.50 (3) 0.80 (60. The solubility of K minimum amount K ₂ SO ₄ is neutralised by 10 ml of 0.5 M H ₂ SO ₄ . The amount of NaOH in 100 ml solution is (1) 0.2 g (2) 0.4 g (3) 0.6 g (4) 0.8 g (4) 0.8 g (1) 0.022 × 10 ¹⁹ (2) 6.023 × 10 ²⁴ (3) 10 ⁴ (4) 2 × 10 ⁻⁴ (4) 2 × 10 ⁻⁴ (5) Match the following: (i) 1 gm atom (a) 16 gm of O (ii) 1 gm molecule (b) 22.4 lt (iii) gm molar volume (c) 1 mol of O ₂ (iv) Equivalent of H ₂ (e) 11.2 lt (1) i-a, ii-c, ii-b, iii-c, iv-d, v-e (2) i-b, ii-a, iii-c, ii-b, vii-c, v-d (4) i-e, ii-b, iii-c, iv-d, v-e (4) i-e, ii-b, iii-c, iv-d, v-a (4) i-e, ii-b, iii-c, iv-d, v-a (5) ii-c, ii-b, iii-c, iv-d, v-a (6) ii-c, ii-b, iii-c, iv-d, v-a (7) ii-c, ii-c, ii-c, ii-c, ii-d, v-d (7) ii-c, ii-c, ii-c, ii-c, ii-d, v-e (1) ii-c,

(1) $C_6H_{12}O_6$ (2) $C_5H_{10}O_5$ (3) $C_4H_8O_4$ (4) $C_3H_6O_3$

66.	• .	arbonate was found to require for complete reactions. The ation is given by:
	(1) 4 N	(2) 2 N
	(3) 0.4 N	(4) 0.2 N
67.	Insulin contains 3.4% weight of insulin is:	sulphur. The minimum mol.
	(1) 941.176	(2) 944
	(3) 945.27	(4) None of these

- 68. Number of mole in 1m³ gas at NTP are:
 - (1) 44.6
- (2) 40.6
- (3) 42.6
- (4) 48.6
- 69. 2.76g of silver carbonate on being strongly heated yields a residue weighing:
 - (1) 2.16g
- (2) 2.48g
- (3) 2.32g
- (4) 2.64g
- 70. The percent of N in 66% pure $(NH_4)_2SO_4$ sample is:
 - (1) 32

(2) 28

(3) 14

- (4) None of these
- 71. Mole fraction of I_2 in C_6H_6 is 0.2. The molality of I_2 in C_6H_6 is:
 - (3) 1.6 mance
- (2) 6.40

- (4) 2.30
- 72. Chlorophyll, a green colouring matter contains 2.68% Mg. The number of atoms of Mg present in 1g chlorophyll are:
 - (1) 6.72×10^{20}
 - (2) 6.72×10^{21}
 - (3) 6.72×10^{22}
 - (4) 6.72×10^{23}
- 73. 16g of SO_x occupies 5.6 litre at STP. Assuming ideal gas nature, the value of x is:
 - (1) 1

(3) 3

- (4) None of these
- 74. Equal moles of H₂O and NaCl are present in a solution. The molality of NaCl solution is:
 - (1) 55.6
- (2) 5.56

(3) 1

- (4) 0.5
- 75. Total number of atoms present in 1.0 cm³ of solid urea (density 0.3 g/cm³) at 25°C are:
 - (1) 3.01×10^{21}
- (2) 2.41×10^{22}
- $(3) 3.01 \times 10^{22}$
- (4) 2.41×10^{23}

- 76. Number of positive ions in 1.45 mole of K₂SO₄ are:
 - (1) 1.75×10^{24}
- (2) 8.73×10^{23}
- (3) 8.73×10^{24}
- (4) 1.75×10^{23}
- 77. The weight of 11.2 litres of CO₂ at STP would be
 - (1) 88 g
- (2) 44 g
- (3) 32 g
- (4) 22 g
- 78. V_1 mL of a solution of normality N_1 is diluted to get a solution of normality N2. What would be the value of V₂ i.e., volume of water required for dilution.

(1)
$$V_2 = \frac{N_1 V_1}{N_2}$$

(3)
$$V_2 = \frac{N_1 V_1}{N_2} - \frac{V_1 N_2}{N_1}$$

(4)
$$V_2 = \frac{N_1 V_1}{N_2} - V_1 N_1$$

- 79. How many formula units are there in a 42 g sample of $(NH_4)_2$ Cr_2O_7 (formula wt. = 252)?
 - (1) 7.0×10^{23}
- (2) 1.0×10^{23}
- $(3) 6.0 \times 10^{23}$
- $(4) 1.4 \times 10^{22}$
- 80. In Haber process, 30 L of dihydrogen and 30L of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of the gaseous mixture under the aforesaid conditions in the end?
 - (1) 20 L NH₃, 25 L N₂ and 20 L H₂
 - (2) 10 L NH₃, 25 L N₂ and 15 L H₂
 - (3) 20 L NH₃, 10 L N₂ and 30 L H₂
 - (4) 20 L NH₃, 25 L N₂ and 15 L H₂
- 81. For the reaction A + 2B \rightarrow C, 5 moles of A and 8 moles of B will produce
 - (1) 5 moles of C
- (2) 4 moles of C
- (3) 8 moles of C
- (4) 13 moles of C
- 82. The number of gram atoms of oxygen in 0.16 mol of $H_2S_2O_7$ is
 - (1) 7

- (2) 1.12
- (3) 11.2
- (4) 3.5
- 83. One requires 0.01 mole of Na₂CO₃. Mass of Na₂CO₃. 10H₂O to be taken is:
 - (1) 1.06 g
- (2) 2.86 g
- (3) 0.10 g
- (4) 3.60 g

84.	The rest mass of an electron is 9.11×10^{-31} kg. Molar mass of the electron is :		93.	A 5 molar solution of H ₂ SO ₄ is diluted from 1 litre to 10 litres. the normality of the solution will be	
	(1) $1.5 \times 10^{-31} \text{ kg mol}^{-1}$	$1.5 \times 10^{-31} \text{ kg mol}^{-1}$ (2) $9.11 \times 10^{-31} \text{ kg mol}^{-1}$		(1) 1.0 N	(2) 2.0 N
	(3) $5.5 \times 10^{-7} \text{ kg mol}^{-1}$ (4) $6.02 \times 10^{23} \text{ kg mol}^{-1}$		-	(3) 0.5 N	(4) 10 N
85.	An aqueous solution of 6.3 g of oxalic acid dihydrate is made up to 250 ml. The volume of 0.1 N NaOH required to completely neutralise 10 ml of this solution is			A 2.0 litre solution of 2.0 N H ₂ SO ₄ will completely react with how many mol of NaCl?	
,	(1) 40 ml (2) 20 ml			(1) 3 mol	100
	(3) 10 ml	(4) 4 ml		(2) 2 mol	
86.	How much of NaOH is required to neutralise 1500 cm ³ of 0.1 N HCl? (Na = 23)			(3) 1 mol (4) 4 mol	
	(1) 40 g	(2) 4 g	95.	-	os Number, then the number
	(3) 6 g	(4) 60 g		of carbon atoms in 14 g	of C-14 is
87.	The mass of oxygen that would be required to produce enough CO which completely reduces 1.6 kg Fe_2O_3 (at. mass $Fe = 56$) is: (1) 240 g (2) 480 g		ce	(1) 14 N 12 (3) N	(2) $\frac{12 \text{ N}}{14}$ (4) 14 N
	(1) 240 g	(2) 480 g	96.	` ′	()
	(3) 720 g	(4) 960 g	<i>7</i> 0.	The mass of oxygen in g present in 3.22 g of $Na_2SO_4.10H_2O$ (molecular mass = 322) is	
88.				(1) 0.64 g	(2) 0.32 g
			97.	(3) 2.24 g	(4) 22.4 g
				$4NH_3(g) + 5O_2(g) \rightarrow 4N$	$IO(g) + 6H_2O(l)$
	(1) 2.28 moles			Two mol of each reactant react to completion. Then	
	(3) 0.6 mole	(4) 0.456 mole	100	(1) No ammonia remains	
89	The number of atoms in 64 g of sulphur in gaseous state is (1) $2 N_A$ (2) $N_A/2$			(2) 2 mol NO is formed	
				(3) 2 mol water is formed	
				(4) Oxygen is completely consumed	
	(3) N _A	$(4) 4 N_A$	98.	The molarity of H ₂ O is	
90.	If 224 ml of a triatomic gas has a mass of 1 gm of			(1) 70 M	(2) 50 M
	STP, then the mass of 1 atom is (1) 8.30×10^{-23} g (2) 2.08×10^{-23} g			(3) 55.5 M	(4) None of these
	(1) 6.30×10^{-23} g (2) 2.08×10^{-23} g (3) 5.53×10^{-23} g (4) 6.24×10^{-23} g		00	2 of suide of motel	is convented to ablamide
91.	OCC TO THE		1311		is converted to chloride
<i>)</i> 1.	extent of 15% only. The mass of ozone that can be prepared from 67.2L of oxygen at S.T.P. will be -			completely and it yielded 5g of chloride. The equivalent mass of metal is	
	(1) 14.4g	(2) 95g		(1) 12	(2) 3.325
	(3) 640g	(4) 64g		(3) 33.25	(4) 20
92.	10g of a piece of marble was put into excess of dilute		$8.4 \text{ g } MgCO_3$ on heating leaves behind a residue		
	HCl acid. When the reaction was complete, 1120 cm ³ of CO ₂ was obtained at S.T.P. The percentage of CaCO ₃ in the marble is -			weighing 4.0 g. Carbon dioxide released into the	
				atmosphere at STP wil	
	(1) 10%	(2) 25%		(1) 2.24 L	(2) 4.48 L
	(3) 50%	(4) 75%		(3) 1.12 L	(4) 0.56 L