ISI Admission Test, 2008: JRF in Biological Anthropology

RBA I & RBA II

SYLLABUS

RBAI

- 1. Introduction: Definition and scope; subdivision of anthropology; interrelationship between anthropology and other disciplines.
- 2. Human evolution: Theories of evolution, taxonomic principles; man's place in the animal kingdom; comparative anatomy of anthropoid apes; structural and functional specialization; biocultural interactions.
- 3. Man as a social animal: choice of mate, monogamy; polygamy; exogamy; endogamy; inbreeding; family; clan; kin group; social stratification and society; role of social factors in influencing genetic and environmental variations.
- 4. Human biological variation and adaptation to environment: Causes of variation, short- and long-term adaptation to different climatic, biotic and socio-cultural environments.
- Anthropological dimensions of population/community health and health care: lifestyles and its relationship with health and disease; ecological variation and health and disease; biocultural dimensions of aging and senescence.
- 6. Demographic studies in anthropology: Basic concepts of demography (population structure, age and sex composition, fecundity, fertility, sterility, morbidity, mortality, marriage, family, migration, population growth); anthropological demography.
- 7. Ethnic and biological diversity of the Indian populations.

RBAII

1. Biological basis of inheritance: Cell, nucleus, chromosome, DNA (structure, replication, recombination, repair, rearrangement, etc.); genetic code; gene action; cell division; normal chromosome structure and number; functions of X and Y chromosomes; autosomal and sex chromosomal aberrations and application to evolution and disease.

- 2. Mendelian genetics: Laws of Mendel; basic terminology (gene, allele, genotype, phenotype, homozygote, heterozygote, linkage, crossing over, etc.); Mendelian inheritance (single factor and multifactorial inheritance, polygenic inheritance).
- 3. Non-Mendalian inheritance: Multiple allelism; co-dominance; sex-linked, sex-limited, sex-influenced traits; epistasis; variable penetrance and expressivity; cytoplasmic inheritance.
- 4. Population genetics and biostatistics: measures of central tendency, and dispersion; probability; correlation and regression; chi- squire and t- test; Hardy- Weinberg equilibrium; mutation; random genetic drift; selection; inbreeding; admixture; assortative mating; isolation; linkage disequilibrium.
- 5. Genetic polymorphisms: Distributions; balanced and transient polymorphisms; variation in genes; simple genetic traits and DNA markers.
- 6. Role of heredity and environment in human biological traits: Different types of twins; twin diagnosis; heritability.

SAMPLE QUESTIONS

RBAI

- 1. Define adaptation. The more generalized a species, the less adapted it is to a particular environment. Is the previous statement correct? Discuss the conditions for the evolutionary success of a specialized and generalized species.
- 2. Is *Homo habilis* a link between the genus Australopithecus and Homo? Discuss.
- 3. What is synthetic theory of evolution? How is it different from Darwin's theory of organic evolution? Discuss.
- 4. Can population pyramids indicate the trends of population growth? Explain giving hypothetical examples of different population pyramids.
- 5. What is culture? Did culture play a role in human evolution? Discuss.
- 6. Outline important types of non-random mating (marriages) in the Indian cultural context. Briefly describe genetic consequences of those types of mating.

- 7. Outline the existing theories on the origin of modern man.
- 8. What are the methods of studying health in Anthropology? What is the relation between culture and health?
- 9. Write short notes on any four of the following:
 - (i) Demographic transition
 - (ii) Fertility and fecundity
 - (iii) Assortative mating & consanguinity
 - (iv) Skin colour as adaptive response to environment
 - (v) Hypoxia
 - (vi) Body Mass Index
 - (vii) Acclimatization
 - (viii) Secular trend in stature

SAMPLE QUESTION

RBAII

Group A

- 1. Outline the basic evolutionary mechanisms that effect change in gene frequency of a population. Describe briefly the way these evolutionary forces operate.
- 2. Describe Hardy-Weinberg Equilibrium and its significance.
- 3. What is Genetic Code? Explain the process of protein synthesis.
- 4. What is heritability? Outline briefly the twin and family methods in determining the heritability of biological characters in man.
- 5 (a). The blood groups of four babies who were born on the same night in a hospital were found to be B, A, O & AB. Assign the babies to the respective biological parents given their blood groups:
 - a. O & O :
 b. AB & O :
 c. A & B :
 d. B & B :

3

- 5 (b). Provide a brief note on the geographic distribution of sickle cell allele.
- 6. Write short notes on any *five* of the following:
 - (i) Erythroblastosis fetalis
 - (ii) Penetrance & expressivity
 - (iii) Genetic load and fitness
 - (iv) Replication and transcription
 - (v) RFLPs
 - (vi) Mendelian population
 - (vii) Pleiotropy and Epistsis
 - (viii) DNA Repair
 - (ix) Phenocopy and genocopy

Group B

- 1. Draw genealogies showing the offspring of each of the Uncle-Niece, First Cousin (FSD & MBD) and 2nd Cross Cousin marriages. Determine inbreeding/consanguinity coefficient for offspring of each of the marriage types and describe the method by which you calculate this coefficient.
- 2. How the sex linked mode of inherence is different from autosomal mode of inheritance? Differentiate between sex linked, sex limited, and sex influenced traits
- 3. If you are asked to investigate the effect of education and income on fertility in your State, how would you design your project? Give a schematic representation of the type of subjects or populations to be considered, the type of different variables to be considered.

Group C

1. The following are the fasting blood glucose levels of 10 children:

72 68 65 66 71 65 62 67 69 65

Compute the mean, median and variance of the above data.

2. The following table contains air pollution data as reported for 30 large cities. Prepare the following: (a) a frequency distribution; (b) a histogram; (c) a frequency polygon curve.

City	Value	City	Value	City	Value
	_				
1.	68	11.	22	21.	42
2.	63	12.	24	22.	32
3.	72	13.	25	23.	31
4.	27	14.	44	24.	28
5.	30	15.	15	25.	17
6.	36	16.	43	26.	54
7.	28	17.	35	27.	14
8.	32	18.	74	28.	47
9.	59	19.	51	29.	32
10.	27	20.	36	30.	45

3. Mean and SD for fasting blood glucose level in a sample of 30 diabetic patients under medication "A" was found to be 125 and 20 respectively. Mean and SD values for another group of 40 diabetic patients under a new medication "B" was found to be 115 and 15. Does medicine B significantly reduce fasting glucose level compared to medicine A? Suggest a suitable statistical test for this problem and find the value of the test statistic on the basis of the observed data and draw your conclusion?