Subject: OPTOELECTRONICS AND COMMUNICATION

Time: 3 Hours
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. An optical fibre has core \& cladding refractive indices of $1.55 \& 1.50$ respectively. The numerical aperture of the fibre is
(A) 0
(B) 1
(C) 0.394
(D) 0.493
b. The wavelength of a light wave in free space for a frequency of 600 GHz \& velocity, $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ is
(A) $1 \mu \mathrm{~m}$
(B) $0.5 \mu \mathrm{~m}$
(C) $1.5 \mu \mathrm{~m}$
(D) $2 \mu \mathrm{~m}$
c. A step index fibre has a core diameter of $200 \mu \mathrm{~m} \& \mathrm{NA}=0.29$. The number of propagating modes at an operating wavelength of 850 nm is
(A) 100
(B) 22953
(C) 35922
(D) 10,000
d. The permittivity of the fibre core is 2.56 , diameter $=1 \mathrm{~cm}, \mu_{2}=1 \& \mathrm{cut}-$ off number $=2.4048$. The maximum frequency of the dominant mode is
(A) 18.373 GHz
(B) 81.373 GHz
(C) 373.81 GHz
(D) 373.18 GHz
e. The optical power after propagating through a fibre of 450 m length is reduced to 30% of it's original value. The fibre loss in $\mathrm{dB} / \mathrm{km}$ is
(A) 26.11
(B) 11.62
(C) 1000
(D) 0
f. The intermodal dispersion per km for a fibre with $\Delta=2 \% \& \mu=1.5$, is
(A) 100 ns
(B) 001 ns
(C) 1000 ns
(D) 0 ns
g. When a LED in applied with 2 V , draws a current of $100 \mathrm{~mA} \&$ produces 2 mW of optical power. The conversion efficiency of the LED is
(A) 0%
(B) 100%
(C) 1%
(D) 50%
h. Germanium has a bandgap of 0.667 eV . A germanium PIN diode has a cut - off length of
(A) $1.86 \mu \mathrm{~m}$
(B) $18.6 \mu \mathrm{~m}$
(C) $0.186 \mu \mathrm{~m}$
(D) $1861 \mu \mathrm{~m}$
i. An LED with a fibre pigtail of diameter $200 \mu \mathrm{~m}$ couples power into a 50 $\mu \mathrm{m}$ graded index core coupling loss is.
(A) 1 dB
(B) 12 dB
(C) 0 dB
(D) 24 dB
j. The velocity of light in an optically active medium with a refractive index of 3.6 is
(A) $3.38 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(B) $33.8 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(C) $8.33 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(D) $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Discuss the significance of any FOUR of the following terms in optical fibres.
(i) Snell's law
(ii) Acceptance angle
(iii) Numerical aperture
(iv) Skew rays
(v) V number
b. Draw a block diagram of a general optical communication system. Explain the blocks which are different from an electronic communication system.
Q. 3 a. What is the physical significance of eye diagrams and also explain different Eye pattern features.
b. Compare various coherent detection techniques.
Q. 4 a. What is intermodal dispersion? Derive an expression for rms impulse due to intermodal dispersion with respect to multimode step index fibres
b. Write a short note on
(i) Scattering.
(ii) Absorption.
(iii) Dispersion shifted fibers.
Q. 5 a. What do you understand by lensing scheme. Explain different lensing schemes for coupling improvement.
b. Compute the macrobend loss of a single mode fibre with core diameter of $10 \mu \mathrm{~m}$ \& cut off wavelength 1250 nm , which is bent into a curve of radius $\mathrm{R}=$ 1.2 cm . the refractive index is 1.4469 . Also, calculate the mode field diameter. Take $\lambda=1.3 \mu \mathrm{~m}$
Q. 6 a. Discuss the principle of operation \& applications of
(i) Fabry - perot filters
(ii) Mach - zehnder interferometer
b. A fibre of 100 km long is used in a communication system. The fibre has a loss of $3.0 \mathrm{~dB} / \mathrm{km}$. What will be the output power when the power fed at the input of the fibre is $500 \mu \mathrm{~W}$
Q. 7 a. What are the key requirements for analyzing a link and system considerations to establish a link power budget.
b. What is the importance of rise time budget, derive an expression for total rise time system.
Q. 8 a. What are the basic elements of an analog link and how noise contribute this link.
b. How do we analyze the performance of analog and digital systems and also examine a single-channel amplitude-modulated signal sent at baseband frequencies.
Q. 9 a. With necessary diagrams, explain SONET frame structure.
b. Explain how optical trace \& optical alarms assist in network management.

