MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Time: Three hours Maximum: 100 marks

SECTION A — $(10 \times 3 = 30 \text{ marks})$

Answer ALL questions.

- 1. Construct the truth table for $(P \to Q) \land (Q \to P)$.
- 2. Write the predicate "*x* is the father of the mother of *y*".
- 3. Show that for any two sets A and B, $A (A \cap B) = A B$.
- 4. Explain partial order relation with an example.
- 5. Define the compositions of functions and give an example.
- 6. Let $X = \{2, 3, 6, 12, 24, 36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Draw the Hash diagram of (\times, \leq) .
- 7. Define normal subgroup and give an example.
- 8. Define a ring and give an example.
- 9. Define a path of a graph and the length of the path with an example.
- 10. Define adjacency matrix of a graph with an example.

SECTION B —
$$(4 \times 10 = 40 \text{ marks})$$

Answer any FOUR questions.

- 11. Obtain the principal conjunctive normal form of the formula $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$.
- 12. Show that $(x)(P(x) \vee Q(x)) \Rightarrow xP(x) \vee (\exists x)Q(x)$.
- 13. Explain relation matrix and the graph of a relation.
- 14. Define characteristics function of a set and using that prove $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 15. Let T be the set of all even integers. Show that the semigroup (Z, +) and (T, +) are isomorphic.

16.	Write	the	Warshall	algorithm	to	produce	the	path	matrix	A^{+}	from	a	given
adjacency matrix A.													
SECTION C — $(2 \times 15 = 30 \text{ marks})$													

Answer any TWO questions.

17. (a) Verify the validity of the following arguments :

All men are mortal

Socrates is a man

Therefore Socrates is a mortal.

(8)

(b) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ $R : \{\langle x, y \rangle / x - y \text{ is divisible by 3}\}$. Show that R is an equivalence relation. Draw the graph of R.

(7)

- 18. (a) Let $f: A \to B$ and $g: B \to C$ be both one-to-one and onto functions. Then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. (8)
- (b) Prove that for any commutative monoid (M, *) the set of idempotent element of M forms a submonoid. (7)
- 19. (a) Prove that in a simple digraph G = (V, E) every node of the digraph lies on exactly one strong component. (7)
 - (b) State and prove Lagranges theorem. (8)