DIPIETE – CS (NEW SCHEME) – Code: DC57

Subject: COMPUTER ORGANIZATION

Time: 3 Hours

DECEMBER 2010

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The individual bits in a status register called

(A) Word	(B) byte
(C) flags	(D) bits

b. The binary code of instruction on a microcomputer is called

(A) Op code	(B) mnemonic
(C) byte	(D) operand

c. Name the sequence of binary codes stored in the control unit

(A) A program	(B) An instruction
(C) An opcode	(D) Micro program

d. The data bytes operated in the ALU are

(A) operands	(B) digits
(C) opcodes	(D) mnemonics

e. If $(2 \ 11)_x = (152)_8$ then the value of base x is

(A) 6	(B) 5
(C) 7	(D) 9

f. The logic expression for overflow in the addition of 2's complement integers is

(A) C_{n-1} or C_n	(B) C_{n-1} and C_n
$(\mathbf{C}) \operatorname{C}_{\mathrm{n-1}} \bigodot \operatorname{C}_{\mathrm{n}}$	(D) $C_n \oplus C_{n-1}$

g. 16 bytes are pulled from stack having top of stack address OOCD. What will be the new top of stack address?

(A) 00BD	(B) 00AD
(C) 00DD	(D) 10CD

DC57 / DEC. - 2010

h. In 4 bit CLA, The addition process requires only

(A) 4 gates	(B) 3 gate delay
(C) 1 XOR gate delay	(D) 2 gate delay

i. Registers R1 & R2 of a computer contain the decimal values 1200 & 4600. Find the effective address of the memory operand for subtract (R1) +, R5

	(A) 5830(C) 4699	(B) 4599(D) 1200
j.	RWM is	
	(A) volatile memory(C) programmable	(B) non volatile memory(D) non programmable

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain different functional units of a digital computer. (4)
	b.	What is a bus? Explain single bus structure in an architecture. (4)
	c.	List the steps needed to execute the following instructions: Add Loc A, R0 Add R1, R2, R3 (8)
Q.3	a.	What is an addressing mode? Explain any 3 addressing mode with example. $(2+2\times3)$
	b.	Represent the decimal values -5, -14, -10, -19, 51 and -43 as signed 7 bit numbers in (i) 2's complement format (ii) signed magnitude format. (4+4)
Q.4	a.	Consider the following possibilities for saving the return address of a subroutine (i) in a processor register (ii) in a memory location associated with the call so that a different location is used when the SR is called from different places. Which of these supports subroutine nesting and which supports subroutine recursion? (4+4)
	b.	Explain interrupt hardware for multiple interrupts with a single INTR line. (8)
Q.5	a.	 Devices A, B, C are connected to the bus of a computer. I/O transfer for 3 devices use interrupt control. (i) Interrupt nesting for devices A & B is not allowed, bus interrupt request from C may be accepted. While A or B is being serviced. Suggest different ways in which this can be accomplished if (i) The

Suggest different ways in which this can be accomplished if (i) The computer has one IRQ line (ii) 2 IRQ lines INTR1 & INTR2 with INTR1 having higher priority than INTR2. (4+4)

	b.	Explain bus arbitration using daisy chain (2+	-6)
Q.6	a.	Explain with a diagram, the operation of a static CMOS RAM cell for read a write operations.	and (8)
	b.	In an SDRAM, RAS line is asserted and the test word of data is transfer five clock cycles later. Assume 32 bits of data are transferred in parallel & 1 MHz clock is used & the burst length is 8. Calculate the time it takes transfer (i) 32 bytes of data (ii) 64 bytes of data	133
		Calculate the latency in each case. (4+	-4)
Q.7	a.		/ in (8)
	b.	A half adder is a combinational logic circuit having x & y inputs and t outputs s & c (sum & carry) (i) design a half adder as a 2 level AND circuit (ii) Implement a full adder using 2 half adders.	
			(4)
	c.	Compare the longest logic delay path through the network	(4)
Q.8	a.	Multiply each pairs of signed 2's complement numbers using Booth Algorith A = 001111 $B = 001111$	
		(Multiplicand) (multiplier)	(8)
	b.	Give the basic features of IEEE FLOATING point number standard.	(8)
Q.9	a.	Explain the control sequences for the execution of the instruction Add(R3),	R1 (8)

b. Explain the control unit organisation of a hardwired control. (8)