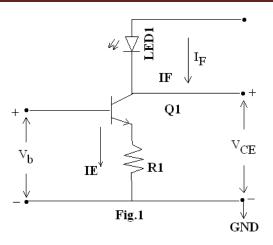
Diplete - Et (NEW SCHEME) - Code: DE56

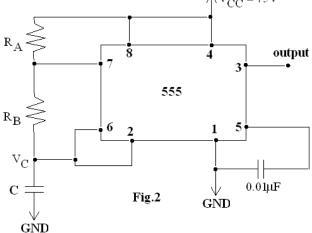
Subject: ANALOG ELECTRONICS

Time: 3 Hours		Max. Marks: 100
	DECEMBER 2010	

NOTE: There are 9 Questions in all.


- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

Q.1	Choose the correct or the best alternative in the following: (2×10)			
	a. The most commonly used transistor circuit configuration is			
	(A) common base(C) common collector	(B) common emitter(D) none of these		
	b. The FET is characterised by			
	(A) voltage gain(C) power gain	(B) current gain.(D) none of these		
	c. When no signal is applied, the power amplifier is	ied, the approximate collector efficiency of a class A		
	(A) 10 % (C) 25 %	(B) 50 % (D) 0 %.		
	d. The input impedance of an ideal op-amp is			
	(A) finite(C) infinite	(B) zero (D) unity		
	e. The slew rate is expressed as			
	(A) $2 \pi \text{ f Vm} / 10^6$ (C) Vm $10^6 / 2 \pi \text{ f}$	(B) 2 π f 10 ⁶ / Vm (D) 2 π f / Vm 10 ⁶		
	f. The instrumentation amplifier having an important feature of			
	(A) high output impedance(C) high dc offset voltage	(B) low output impedance(D) low CMMR		


	g. In a multivibrator, we have	feedback			
	(A) 100% positive(C) negative	(B) both positive and negative(D) none of these			
	h. In the diffused resistor method, th terms of surface dimensions L, W	e sheet resistance Rs can be expressed in and diffused resistor R as			
	(A) RL/W (C) W/RL	(B) RW/L (D) RWL			
	i. In the common mode configuration, gain is				
	(A) very high(C) always unity	(B) always infinite(D) very low			
	j. IC 723 General purpose regulator has following limitations				
	(A) no short circuit protection(C) no inbuilt thermal protection	(B) output voltage is fixed(D) none of these			
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2	a. List the basic processes used in a oxidation process in detail.	List the basic processes used in the silicon planar technology, and describe the oxidation process in detail. (8)			
	b. Discuss the various ways for fab	ricating PNP transistor. (8)			
Q.3		Draw an h-parameter equivalent circuit for the CB unbypassed base bias configuration and briefly explain the component of the model. (8)			
	b. A CE amplifier having the follo	A CE amplifier having the following h parameters $h_{ie} = 1100\Omega$, $h_{oe} = 25\mu S$,			
	$h_{fe} = 50$ and $h_{re} = 2.5 \times 10^{-4}$, is current and voltage gain.	f load and source resistances are 1 K Ω . Find (8)			
Q.4		Draw the transfer characteristics of a FET and show that the gate source voltage increases with decrease in drain current. (8)			
	b. A JFET has a drain current of Voltage $V_{GS(off)}$ = -6V, find the v	5mA, I_{DSS} of 10 mA and gate source cut off alues of (i) V_{GS} and (ii) V_{P} (8)			
Q.5	_	nsformer-coupled class A amplifier and drive en reflected load and the secondary load. (8)			
	b. The LED in the circuit shown in	n Fig.1 is to pass a 20mA current. The circuit			

suitable resistance value for $R_{\rm 1}$ and calculate V_{CE} for $Q_{\rm 1.}$

voltages are Vcc = 15V, $\,V_{BE} = 0.7 \,V$, $\,V_{F} = 1.9$ V and $\,V_{B} = 5 V.$ Determine a

- Q.6 a. Describe the ronowing the characteristics of op unip.
 - (i) Input offset voltage
 - (ii) Input offset current
 - (iii) Input bias current
 - (iv) Thermal drift
 - b. Describe the operation of voltage follower using op-amp. Why it is also called as non-inverting buffer amplifier. (8)
- Q.7 a. Draw the circuit of op-amp integrator and drive an expression for the output voltage. (8)
 - b. A non inverting summing amplifier having three resistances at non inverting terminal are $R_1 = R_2 = R_3 = 1K\Omega$, the feedback resistance is of $2K\Omega$. The input sources connected at the non-inverting terminals are of $V_a = 3V$, $V_b = 4V$ and $V_c = -1V$, find the output voltage (V_o) .
- Q.8 a. Describe the operation of a stable multivibrator using IC555 as shown in Fig. 2 and find the frequency of oscillation and duty cycle if R_A =6.8 K Ω , R_B = 3.3 K Ω and C= 0.1 μ F. (8)

b. List the important
Describe any one circuit in detail.

(8)

(8)

- Q.9 a. Draw the connection diagram of three pin adjustable voltage regulator (LM 317). Find the value of input set resistor R_1 and output set resistor R_2 . The output voltage V_o =5V, output current I_o =1.0A, adjustment pin current I_Q =100 μ A and the voltage between output and reference terminal is V_R = 1.25 V, I_{R1} = 5mA.
 - b. Draw the functional diagram of ADC and list out the names and applications of commonly used ADCs. (8)